221
Views
6
CrossRef citations to date
0
Altmetric
Review

The Role of Heat Shock Protein 70 kDa in Asthma

ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 757-772 | Published online: 05 Jan 2021

References

  • Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56. doi:10.1038/ni.304925521684
  • Kuruvilla ME, Lee FE-H, Lee GB. Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clin Rev Allergy Immunol. 2019;56(2):219–233. doi:10.1007/s12016-018-8712-130206782
  • Boonpiyathad T, Sozener ZC, Satitsuksanoa P, Akdis CA. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333. doi:10.1016/j.smim.2019.10133331703832
  • Lambrecht BN, Hammad H, Fahy JV. The cytokine of asthma. Immunity. 2019;50(4):975–991. doi:10.1016/j.immuni.2019.03.01830995510
  • Huang XL, Tan XY, Liang Y, et al. Differential DAMP release was observed in the sputum of COPD, asthma and asthma-COPD overlap (ACO) patients. Sci Rep. 2019;9:19241. doi:10.1038/s41598-019-55502-231848359
  • Radons J. The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016;21(3):379–404.26865365
  • Kampinga HH, Hageman J, Vos MJ, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105–111. doi:10.1007/s12192-008-0068-718663603
  • Hou C, Zhao H, Li W, et al. Erratum to: increased heat shock protein 70 levels in induced sputum and plasma correlate with severity of asthma patients. Cell Stress Chaperones. 2011;16(6):663–671. doi:10.1007/s12192-011-0278-221643870
  • Shevchenko MA, Troyanova NI, Servuli EA, Bolkhovitina EL, Fedorina AS, Sapozhnikov AM. Study of immunomodulatory effects of extracellular HSP70 in a mouse model of allergic airway inflammation. Biochemistry (Mosc). 2016;81(11):1384–1395. doi:10.1134/S000629791611015827914463
  • Borges TJ, Wieten L, van Herwijnen MJ, et al. The anti-inflammatory mechanisms of Hsp70. Front Immunol. 2012;3:95. doi:10.3389/fimmu.2012.0009522566973
  • De Maio A. Extracellular Hsp70: export and function. Curr Protein Pept Sci. 2014;15(3):225–231. doi:10.2174/138920371566614033111305724694368
  • Satoh M, Shimoda Y, Akatsu T, Ishikawa Y, Minami Y, Nakamura M. Elevated circulating levels of heat shock protein 70 are related to systemic inflammatory reaction through monocyte toll signal in patients with heart failure after acute myocardial infarction. Eur J Heart Fail. 2006;8(8):810–815. doi:10.1016/j.ejheart.2006.03.00416714144
  • Stocki P, Dickinson AM. The immunosuppressive activity of heat shock protein 70. Autoimmune Dis. 2012;2012:617213. doi:10.1155/2012/61721323326648
  • Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 2002;23(3):130–135. doi:10.1016/S1471-4906(01)02168-811864840
  • Cantillo JF, Puerta L, Puchalska P, Lafosse-Marin S, Subiza JL, Fernandez-Caldas E. Allergenome characterization of the mosquito aedes aegypti. Allergy. 2017;72(10):1499–1509. doi:10.1111/all.1315028235135
  • Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121(4):847–852.e7. doi:10.1016/j.jaci.2008.01.02518395549
  • Xie ZJ, Yin J. Chinese birch pollen allergy and immunotherapy in Mice. Inflammation. 2019;42(3):961–972. doi:10.1007/s10753-019-00957-830715691
  • Yang M, Wu T, Cheng L, Wang F, Wei Q, Tanguay RM. Plasma antibodies against heat shock protein 70 correlate with the incidence and severity of asthma in a Chinese population. Respir Res. 2005;6(1):18. doi:10.1186/1465-9921-6-1815710045
  • Hosseini SA, Zilaee M, Shoushtari MH, Dehcheshmeh MG. An evaluation of the effect of saffron supplementation on the antibody titer to heat-shock protein (HSP) 70, hsCRP and spirometry test in patients with mild and moderate persistent allergic asthma: a triple-blind, randomized placebo-controlled trial. Respir Med. 2018;145:28–34. doi:10.1016/j.rmed.2018.10.01630509713
  • Andersson A, Rasool O, Schmidt M, et al. Cloning, expression and characterization of two new IgE-binding proteins from the yeast Malassezia sympodialis with sequence similarities to heat shock proteins and manganese superoxide dismutase. Eur J Biochem. 2004;271(10):1885–1894. doi:10.1111/j.1432-1033.2004.04098.x15128298
  • Vignola AM, Chanez P, Polla BS, Vic P, Godard P, Bousquet J. Increased expression of heat-shock-protein-70 on airway cells in asthma and chronic-bronchitis. Am J Respir Cell Mol Biol. 1995;13(6):683–691. doi:10.1165/ajrcmb.13.6.75767067576706
  • Tong WC, Luo WC. Heat shock proteins mRNA expressions by peripheral blood mononuclear cells in asthma and chronic bronchitis. Chin Med J. 2000;113(2):175–177.11775547
  • Prado N, Marazuela EG, Segura E, et al. Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol. 2008;181(2):1519–1525. doi:10.4049/jimmunol.181.2.151918606707
  • Asea A, Kraeft SK, Kurt-Jones EA, et al. Hsp70 stimulates cytokine production via a CD14-dependent pathway: a “chaperokine”. Cell Stress Chaperones. 2000;5(5):491.
  • Li CJ, Ning W, Matthay MA, Feghali-Bostwick CA, Choi AMK. MAPK pathway mediates EGR-1-HSP70-dependent cigarette smoke-induced chemokine production. Am J Physiol Lung Cell Mol Physiol. 2007;292(5):L1297–L1303. doi:10.1152/ajplung.00194.200617494953
  • Chase MA, Wheeler DS, Lierl KM, Hughes VS, Wong HR, Page K. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappa B-dependent mechanism. J Immunol. 2007;179(9):6318–6324. doi:10.4049/jimmunol.179.9.631817947709
  • Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res. 2009;10(1):31. doi:10.1186/1465-9921-10-3119405961
  • Hulina A, Rajkovic MG, Despot DJ, et al. Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones. 2018;23(3):373–384. doi:10.1007/s12192-017-0847-029067554
  • Hulina-Tomaskovic A, Rajkovic MG, Jelic D, et al. Pro-inflammatory effects of extracellular Hsp70 on NCI-H292 human bronchial epithelial cell line. Int J Exp Pathol. 2019;100(5–6):320–329. doi:10.1111/iep.1233531828837
  • Mac Sharry J, Shalaby KH, Marchica C, et al. Concomitant exposure to ovalbumin and endotoxin augments airway inflammation but not airway hyperresponsiveness in a murine model of asthma. PLoS One. 2014;9(6):e98648. doi:10.1371/journal.pone.009864824968337
  • Yombo D, Mentik-Kane MM, Wilson MS, Wynn TA, Madala SK. Hsp70 is a positive regulator of airway inflammation and mucus hypersecretion through the increase of type 2 cytokine production by activated T cells in allergic asthma. Am J Respir Crit Care Med. 2019;199:A1053.
  • Singleton KD, Wischmeyer PE. Effects of HSP70.1/3 gene knockout on acute respiratory distress syndrome and the inflammatory response following sepsis. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L956–L961. doi:10.1152/ajplung.00466.200516361353
  • Fujibayashi T, Hashimoto N, Jijiwa M, Hasegawa Y, Kojima T, Ishiguro N. Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model. BMC Pulm Med. 2009;9:45. doi:10.1186/1471-2466-9-4519758434
  • Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T. Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol. 2010;80(6):920–931. doi:10.1016/j.bcp.2010.05.02520513440
  • Calderwood SK, Theriault J, Gray PJ, Gong J. Cell surface receptors for molecular chaperones. Methods. 2007;43(3):199–206. doi:10.1016/j.ymeth.2007.06.00817920516
  • Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14(3):303–313. doi:10.1016/S1074-7613(01)00111-X11290339
  • Fong JJ, Sreedhara K, Deng LW, et al. Immunomodulatory activity of extracellular Hsp70 mediated via paired receptors siglec-5 and siglec-14. EMBO J. 2015;34(22):2775–2788. doi:10.15252/embj.20159140726459514
  • Murshid A, Borges TJ, Bonorino C, Lang BJ, Calderwood SK. Immunological outcomes mediated upon binding of heat shock proteins to scavenger receptors SCARF1 and LOX-1, and endocytosis by mononuclear phagocytes. Front Immunol. 2020;10:3035. doi:10.3389/fimmu.2019.0303531998315
  • Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70 - role of toll-like receptor (TLR) 2 AND TLR4. J Biol Chem. 2002;277(17):15028–15034. doi:10.1074/jbc.M20049720011836257
  • Murshid A, Borges TJ, Lang BJ, Calderwood SK. The scavenger receptor SREC-I cooperates with toll-like receptors to trigger inflammatory innate immune responses. Front Immunol. 2016;7:226. doi:10.3389/fimmu.2016.0022627379091
  • Grunwald MS, Ligabue-Braun R, Souza CS, et al. Putative model for heat shock protein 70 complexation with receptor of advanced glycation end products through fluorescence proximity assays and normal mode analyses. Cell Stress Chaperones. 2017;22(1):99–111. doi:10.1007/s12192-016-0746-927858225
  • Oczypok EA, Perkins TN, Oury TD. All the “RAGE” in lung disease: the receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev. 2017;23:40–49. doi:10.1016/j.prrv.2017.03.01228416135
  • Shang LQ, Wang L, Shi XL, et al. HMGB1 was negatively regulated by HSF1 and mediated the TLR4/MyD88/NF-kappa B signal pathway in asthma. Life Sci. 2020;241:117120. doi:10.1016/j.lfs.2019.11712031825792
  • Cappelletti M, Presicce P, Calcaterra F, Mavilio D, Della Bella S. Bright expression of CD91 identifies highly activated human dendritic cells that can be expanded by defensins. Immunology. 2015;144(4):661–667. doi:10.1111/imm.1241825351513
  • Mishra A, Yao XL, Saxena A, et al. Low-density lipoprotein receptor-related protein 1 attenuates house dust mite-induced eosinophilic airway inflammation by suppressing dendritic cell-mediated adaptive immune responses. J Allergy Clin Immunol. 2018;142(4):1066–1079.e6. doi:10.1016/j.jaci.2017.10.04429274414
  • Hadebe S, Brombacher F, Brown GD. C-type lectin receptors in asthma. Front Immunol. 2018;9:733. doi:10.3389/fimmu.2018.0073329696023
  • Patten DA, Shetty S. More than just a removal service: scavenger receptors in leukocyte trafficking. Front Immunol. 2018;9:2904.30631321
  • Chen Z, Bai FF, Han L, et al. Targeting neutrophils in severe asthma via siglec-9. Int Arch Allergy Immunol. 2018;175(1–2):5–15. doi:10.1159/00048487329306942
  • Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14(10):653–666. doi:10.1038/nri373725234143
  • Schleimer RP, Schnaar RL, Bochner BS. Regulation of airway inflammation by siglec-8 and siglec-9 sialoglycan ligand expression. Curr Opin Allergy Clin Immunol. 2016;16(1):24–30. doi:10.1097/ACI.000000000000023426694037
  • Zakeri A, Russo M. Dual role of toll-like receptors in human and experimental asthma models. Front Immunol. 2018;9:1027. doi:10.3389/fimmu.2018.0102729867994
  • Pooe OJ, Kollisch G, Heine H, Shonhai A. Plasmodium falciparum heat shock protein 70 lacks immune modulatory activity. Protein Pept Lett. 2017;24(6):503–510. doi:10.2174/092986652466617021414190928201964
  • Ferat-Osorio E, Sanchez-Anaya A, Gutierrez-Mendoza M, et al. Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. J Inflamm (Lond). 2014;11(1):19. doi:10.1186/1476-9255-11-1925053922
  • Bauer AK, Rondini EA, Hummel KA, et al. Identification of candidate genes downstream of TLR4 signaling after ozone exposure in mice: a role for heat-shock protein 70. Environ Health Perspect. 2011;119(8):1091–1097. doi:10.1289/ehp.100332621543283
  • Gorska MM. Natural killer cells in asthma. Curr Opin Allergy Clin Immunol. 2017;17(1):50–54. doi:10.1097/ACI.000000000000032727841766
  • Farhadi N, Lambert L, Triulzi C, Openshaw PJM, Guerra N, Culley FJ. Natural killer cell NKG2D and granzyme B are critical for allergic pulmonary inflammation. J Allergy Clin Immunol. 2014;133(3):827–835.e3. doi:10.1016/j.jaci.2013.09.04824290277
  • Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38(12):942–954. doi:10.1016/j.it.2017.07.00328784414
  • Lommatzsch M, Julius P, Kuepper M, et al. The course of allergen-induced leukocyte infiltration in human and experimental asthma. J Allergy Clin Immunol. 2006;118(1):91–97. doi:10.1016/j.jaci.2006.02.03416815143
  • Lutfi R, Lewkowich IP, Zhou P, Ledford JR, Page K. The role of protease-activated receptor-2 on pulmonary neutrophils in the innate immune response to cockroach allergen. J Inflamm (Lond). 2012;9(1):32. doi:10.1186/1476-9255-9-3222954301
  • Patel DF, Piero T, Bruno N, et al. Neutrophil restrain allergic airway inflammation by limiting ILC2 function and monocyte-dendritic cell antigen presentation. Sci Immunol. 2019;4(41):eaax7006. doi:10.1126/sciimmunol.aax700631704734
  • Ortega E, Hinchado MD, Martin-Cordero L, Asea A. The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise. Stress. 2009;12(3):240–249. doi:10.1080/1025389080230985318850491
  • Assimon VA, Gillies AT, Rauch JN, Gestwicki JE. Hsp70 protein complexes as drug targets. Curr Pharm Des. 2013;19(3):404–417. doi:10.2174/13816121380414369922920901
  • Fan GH, Yang W, Sai J, Richmond A. Hsc/Hsp70 interacting protein (hip) associates with CXCR2 and regulates the receptor signaling and trafficking. J Biol Chem. 2002;277(8):6590–6597. doi:10.1074/jbc.M11058820011751889
  • Ciepiela O, Ostafin M, Demkow U. Neutrophils in asthma–a review. Respir Physiol Neurobiol. 2015;209:13–16. doi:10.1016/j.resp.2014.12.00425511380
  • Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol. 2011;127(5):1260–1266. doi:10.1016/j.jaci.2010.12.110321315435
  • Fox S, Leitch AE, Duffin R, Haslett C, Rossi AG. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J Innate Immun. 2010;2(3):216–227. doi:10.1159/00028436720375550
  • Troyanova NI, Shevchenko MA, Boyko AA, et al. Modulating effect of extracellular HSP70 on generation of reactive oxigen species in populations of phagocytes. Russ J Bioorg Chem. 2015;41(3):271–279. doi:10.1134/S1068162015030097
  • Yurinskaya MM, Evgen’ev MB, Antonova OY, Vinokurov MG. Exogenous heat shock protein HSP70 suppresses bacterial pathogen-induced activation of human neutrophils. Dokl Biochem Biophys. 2010;435:316–319. doi:10.1134/S160767291006009821184302
  • Sofoluwe A, Bacchetta M, Badaoui M, Kwak BR, Chanson M. ATP amplifies NADPH-dependent and -independent neutrophil extracellular trap formation. Sci Rep. 2019;9(1):16556. doi:10.1038/s41598-019-53058-931719610
  • Woytschak J, Keller N, Krieg C, et al. Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity. 2016;45(1):172–184. doi:10.1016/j.immuni.2016.06.02527438770
  • Li Y, Shi XL, Cheng ZY, Li GP, Zhong S, Chen Z. HSP70/CD80 DNA vaccine inhibits airway remodeling by regulating the transcription factors T-bet and GATA-3 in a murine model of chronic asthma. Arch Med Sci. 2013;9(5):906–915. doi:10.5114/aoms.2013.3318024273578
  • Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15(4):203–216. doi:10.1038/nri381825720354
  • Afshar R, Medoff BD, Luster AD. Allergic asthma: a tale of many T cells. Clin Exp Allergy. 2008;38(12):1847–1857. doi:10.1111/j.1365-2222.2008.03119.x19037961
  • Lambrecht BN. Dendritic cells and the regulation of the allergic immune response. Allergy. 2005;60(3):271–282. doi:10.1111/j.1398-9995.2005.00708.x15679711
  • Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2(3):185–194. doi:10.1038/nri74911913069
  • Multhoff G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods. 2007;43(3):229–237. doi:10.1016/j.ymeth.2007.06.00617920520
  • Shevtsov M, Multhoff G. Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol. 2016;7:171. doi:10.3389/fimmu.2016.0017127199993
  • Motta A, Schmitz C, Rodrigues L, et al. Mycobacterium tuberculosis heat-shock protein 70 impairs maturation of dendritic cells from bone marrow precursors, induces interleukin-10 production and inhibits T-cell proliferation in vitro. Immunology. 2007;121(4):462–472. doi:10.1111/j.1365-2567.2007.02564.x17346283
  • Rohrer KM, Haug M, Schworer D, Kalbacher H, Holzer U. Mutations in the substrate binding site of human heat-shock protein 70 indicate specific interaction with HLA-DR outside the peptide binding groove. Immunology. 2014;142(2):237–247. doi:10.1111/imm.1224924428437
  • Stocki P, Morris NJ, Preisinger C, et al. Identification of potential HLA class I and class II epitope precursors associated with heat shock protein 70 (HSPA). Cell Stress Chaperones. 2010;15(5):729–741. doi:10.1007/s12192-010-0184-z20358320
  • Berings M, Karaaslan C, Altunbulakli C, et al. Advances and highlights in allergen immunotherapy: on the way to sustained clinical and immunologic tolerance. J Allergy Clin Immunol. 2017;140(5):1250–1267. doi:10.1016/j.jaci.2017.08.02528941667
  • Wambre E, DeLong JH, James EA, et al. Specific immunotherapy modifies allergen-specific CD4(+) T-cell responses in an epitope-dependent manner. J Allergy Clin Immunol. 2014;133(3):872–879.e7. doi:10.1016/j.jaci.2013.10.05424373351
  • Brenu EW, Staines DR, Tajouri L, Huth T, Ashton KJ, Marshall-Gradisnik SM. Heat shock proteins and regulatory T cells. Autoimmune Dis. 2013;2013:813256. doi:10.1155/2013/81325623573417
  • Wieten L, van der Zee R, Spiering R, et al. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum. 2010;62(4):1026–1035. doi:10.1002/art.2734420131272
  • Mantel PY, Kuipers H, Boyman O, et al. GATA3-driven Th2 responses inhibit TGF-beta1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol. 2007;5(12):e329. doi:10.1371/journal.pbio.005032918162042
  • Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun. 2010;2(3):238–247. doi:10.1159/00029650820375559
  • Kampinga HH, Craig EA. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol. 2010;11(8):579–592. doi:10.1038/nrm294120651708
  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20(11):665–680. doi:10.1038/s41580-019-0133-331253954
  • Terrab L, Wipf P. Hsp70 and the unfolded protein response as a challenging drug target and an inspiration for probe molecule development. ACS Med Chem Lett. 2020;11(3):232–236. doi:10.1021/acsmedchemlett.9b0058332184949
  • Osorio F, Lambrecht B, Janssens S. The UPR and lung disease. Semin Immunopathol. 2013;35:293–306. doi:10.1007/s00281-013-0368-623536202
  • Miao K, Zhang L, Pan T, Wang Y. Update on the role of endoplasmic reticulum stress in asthma. Am J Transl Res. 2020;12(4):1168–1183.32355534
  • Kim SR, Kim DI, Kang MR, et al. Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation. J Allergy Clin Immunol. 2013;132(6):1397–1408. doi:10.1016/j.jaci.2013.08.04124161747
  • Zeki AA, Yeganeh B, Kenyon NJ, Post M, Ghavami S. Autophagy in airway diseases: a new frontier in human asthma? Allergy. 2016;71(1):5–14. doi:10.1111/all.1276126335713
  • Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett. 2017;591(17):2648–2660. doi:10.1002/1873-3468.1275128696498
  • Lukaszewicz A, Niechoda A, Zarzecki M, Cwiklinska M, Holownia A. Co-expression of Hsp70 protein and autophagy marker protein LC3 in A549 cells and THP1 cells exposed to nanoparticles of air pollution. Adv Exp Med Biol. 2020;1271:61–68.31925751
  • Ornatowski W, Lu Q, Yegambaram M, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020;36:101679. doi:10.1016/j.redox.2020.10167932818797
  • McAlinden KD, Deshpande DA, Ghavami S, et al. Autophagy activation in asthma airways remodeling. Am J Respir Cell Mol Biol. 2019;60(5):541–553. doi:10.1165/rcmb.2018-0169OC30383396
  • Liu JN, Suh DH, Trinh HK, Chwae YJ, Park HS, Shin YS. The role of autophagy in allergic inflammation: a new target for severe asthma. Exp Mol Med. 2016;48(7):e243. doi:10.1038/emm.2016.3827364893
  • Menoret A. Purification of recombinant and endogenous HSP70s. Methods. 2004;32(1):7–12. doi:10.1016/S1046-2023(03)00180-414624870
  • Hurley JH. The sugar kinase/heat shock protein 70/actin super family: implications of conserved structure for mechanism. Annu Rev Biophys Biomol Struct. 1996;25:137–162. doi:10.1146/annurev.bb.25.060196.0010338800467
  • Vogel M, Bukau B, Mayer MP. Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell. 2006;21(3):359–367. doi:10.1016/j.molcel.2005.12.01716455491
  • Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J. The second step of ATP binding to DnaK induces peptide release. J Mol Biol. 1996;263(5):657–670. doi:10.1006/jmbi.1996.06068947566
  • Kityk R, Kopp J, Sinning I, Mayer MP. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol Cell. 2012;48(6):863–874. doi:10.1016/j.molcel.2012.09.02323123194
  • Kepp O, Loos F, Liu P, Kroemer G. Extracellular nucleosides and nucleotides as immunomodulators. Immunol Rev. 2017;280(1):83–92. doi:10.1111/imr.1257129027229
  • Willart MA, Lambrecht BN. The danger within: endogenous danger signals, atopy and asthma. Clin Exp Allergy. 2009;39(1):12–19. doi:10.1111/j.1365-2222.2008.03118.x19016800
  • Idzko M, Hammad H, van Nimwegen M, et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med. 2007;13(8):913–919. doi:10.1038/nm161717632526
  • Gorini S, Gatta L, Pontecorvo L, Vitiello L, la Sala A. Regulation of innate immunity by extracellular nucleotides. Am J Blood Res. 2013;3(1):14–28.23358447
  • Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783(5):673–694. doi:10.1016/j.bbamcr.2008.01.02418302942
  • Zimmermann H, Zebisch M, Strater N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8(3):437–502.22555564
  • Vitiello L, Gorini S, Rosano G, la Sala A. Immunoregulation through extracellular nucleotides. Blood. 2012;120(3):511–518. doi:10.1182/blood-2012-01-40649622661701
  • Bolkhovitina EL, Sapozhnikov AM, Shevchenko MA. Effect of heat shock protein 70 on ATP-induced dendritic cell chemotaxis. Russ J Immunol. 2013;7((16)(2–3)):342–343.
  • Goloudina AR, Demidov ON, Garrido C. Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett. 2012;325(2):117–124. doi:10.1016/j.canlet.2012.06.00322750096
  • Breitenbach M, Simon-Nobbe B. The allergens of Cladosporium herbarum and Alternaria alternata. Chem Immunol. 2002;81:48–72.12102004
  • Shen HD, Au LC, Lin WL, Liaw SF, Tsai JJ, Han SH. Molecular cloning and expression of a Penicillium citrinum allergen with sequence homology and antigenic crossreactivity to a hsp 70 human heat shock protein. Clin Exp Allergy. 1997;27(6):682–690. doi:10.1111/j.1365-2222.1997.tb01197.x9208190
  • Aki T, Fujikawa A, Wada T, et al. Cloning and expression of cDNA coding for a new allergen from the house dust mite, dermatophagoides farinae: homology with human heat shock cognate proteins in the heat shock protein 70 family. J Biochem. 1994;115(3):435–440. doi:10.1093/oxfordjournals.jbchem.a1243568056755
  • An S, Chen LL, Long CB, et al. Dermatophagoides farinae allergens diversity identification by proteomics. Mol Cell Proteomics. 2013;12(7):1818–1828. doi:10.1074/mcp.M112.02713623481662
  • Liu XY, Yang KY, Wang MQ, et al. High-quality assembly of Dermatophagoides pteronyssinus genome and transcriptome reveals a wide range of novel allergens. J Allergy Clin Immunol. 2018;141(6):2268–2271. doi:10.1016/j.jaci.2017.11.03829305317
  • Cui Y, Yu L, Teng F, et al. Transcriptomic/proteomic identification of allergens in the mite Tyrophagus putrescentiae. Allergy. 2016;71(11):1635–1639. doi:10.1111/all.1299927496383
  • Gruehn S, Suphioglu C, O’Hehir RE, Volkmann D. Molecular cloning and characterization of hazel pollen protein (70 kD) as a luminal binding protein (BiP): a novel cross-reactive plant allergen. Int Arch Allergy Immunol. 2003;131(2):91–100. doi:10.1159/00007092412811017
  • Zhang L, Muradia G, De Vouge MW, Rode H, Vijay HM. An allergenic polypeptide representing a variable region of hsp 70 cloned from a cDNA library of Cladosporium herbarum. Clin Exp Allergy. 1996;26(1):88–95. doi:10.1111/j.1365-2222.1996.tb00060.x8789547
  • Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M. The spectrum of fungal allergy. Int Arch Allergy Immunol. 2008;145(1):58–86. doi:10.1159/00010757817709917