74
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

GARP Polymorphisms Associated with Susceptibility to House Dust Mite-Sensitized Persistent Allergic Rhinitis in a Chinese Population

, , , , , , , , , & ORCID Icon show all
Pages 1369-1381 | Received 17 Mar 2022, Accepted 27 Aug 2022, Published online: 28 Sep 2022

References

  • Bousquet J, Khaltaev N, Cruz AA, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy. 2008;63(Suppl 86):8–160. doi:10.1111/j.1398-9995.2007.01620.x
  • Brożek JL, Bousquet J, Agache I, et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–958. doi:10.1016/j.jaci.2017.03.050
  • Cheng L, Chen J, Fu Q, et al. Chinese Society of Allergy guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res. 2018;10(4):300–353. doi:10.4168/aair.2018.10.4.300
  • Samitas K, Carter A, Kariyawasam HH, et al. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018;73(5):993–1002. doi:10.1111/all.13373
  • Wang J, Zhang Y, Li B, et al. Asthma and allergic rhinitis among young parents in China in relation to outdoor air pollution, climate and home environment. Sci Total Environ. 2021;751:141734. doi:10.1016/j.scitotenv.2020.141734
  • Nordeide Kuiper I, Svanes C, Markevych I, et al. Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood. Environ Int. 2021;146:106219. doi:10.1016/j.envint.2020.106219
  • Bousquet J, Schünemann HJ, Samolinski B, et al. Allergic Rhinitis and its Impact on Asthma (ARIA): achievements in 10 years and future needs. J Allergy Clin Immunol. 2012;130(5):1049–1062. doi:10.1016/j.jaci.2012.07.053
  • Marseglia GL, Caimmi S, Marseglia A, et al. Rhinosinusitis and asthma. Int J Immunopathol Pharmacol. 2010;23(1 Suppl):29–31.
  • Laulajainen-Hongisto A, Lyly A, Hanif T. Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clin Transl Allergy. 2020;10(1):45. doi:10.1186/s13601-020-00347-6
  • Tang L, Chen Y, Xiang Q, et al. The association between IL18, FOXP3 and IL13 genes polymorphisms and risk of allergic rhinitis: a meta-analysis. Inflamm Res. 2020;69(9):911–923. doi:10.1007/s00011-020-01368-4
  • Gao Y, Li J, Zhang Y, et al. Replication study of susceptibility variants associated with allergic rhinitis and allergy in Han Chinese. Allergy Asthma Clin Immunol. 2020;16:13. doi:10.1186/s13223-020-0411-9
  • Zhu XJ, Lu MP, Chen RX, et al. Polymorphism -509C/T in TGFB1 promoter is associated with increased risk and severity of persistent allergic rhinitis in a Chinese population. Am J Rhinol Allergy. 2020;34(5):597–603. doi:10.1177/1945892420913441
  • Chen RX, Lu WM, Lu MP, et al. Polymorphisms in microRNA target sites of TGF-β signaling pathway genes and susceptibility to allergic rhinitis. Int Arch Allergy Immunol. 2021;182(5):399–407. doi:10.1159/000511975
  • Shevach EM. Garp as a therapeutic target for modulation of T regulatory cell function. Expert Opin Ther Targets. 2017;21(2):191–200. doi:10.1080/14728222.2017.1275568
  • Chen J, Chen Q, Wu C, et al. Genetic variants of the C11orf30-LRRC32 region are associated with childhood asthma in the Chinese population. Allergol Immunopathol (Madr). 2020;48(4):390–394. doi:10.1016/j.aller.2019.09.002
  • Li J, Zhang Y, Zhang L. Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy. Curr Opin Allergy Clin Immunol. 2015;15(1):33–40. doi:10.1097/ACI.0000000000000124
  • Manz J, Rodríguez E, ElSharawy A, et al. Targeted resequencing and functional testing identifies low-frequency missense variants in the gene encoding GARP as significant contributors to atopic dermatitis risk. J Invest Dermatol. 2016;136(12):2380–2386. doi:10.1016/j.jid.2016.07.009
  • Nasrallah R, Imianowski CJ, Bossini-Castillo L, et al. A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature. 2020;583(7816):447–452. doi:10.1038/s41586-020-2296-7
  • Lehmkuhl P, Gentz M, Garcia de Otezya AC, et al. Dysregulated immunity in PID patients with low GARP expression on Tregs due to mutations in LRRC32. Cell Mol Immunol. 2021;18(7):1677–1691. doi:10.1038/s41423-021-00701-z
  • Marenholz I, Esparza-Gordillo J, Rüschendorf F, et al. Meta-analysis identifies seven susceptibility loci involved in the atopic march. Nat Commun. 2015;6:8804. doi:10.1038/ncomms9804
  • Chen RX, Dai MD, Zhang QZ, et al. TLR signaling pathway gene polymorphisms, gene-gene and gene-environment interactions in allergic rhinitis. J Inflamm Res. 2022;15:3613–3630. doi:10.2147/JIR.S364877
  • Bousquet PJ, Combescure C, Neukirch F, et al. Visual analog scales can assess the severity of rhinitis graded according to ARIA guidelines. Allergy. 2007;62(4):367–372. doi:10.1111/j.1398-9995.2006.01276.x
  • Chen M, Zheng R, Li F, et al. Genetic variants in Hippo pathway genes are associated with house dust mite-induced allergic rhinitis in a Chinese population. Clin Transl Allergy. 2021;11(10):e12077. doi:10.1002/clt2.12077
  • Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016;44(D1):D877–81. doi:10.1093/nar/gkv1340
  • Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–1797. doi:10.1101/gr.137323.112
  • Wang W, Yang C, Nie H, et al. LIMK2 acts as an oncogene in bladder cancer and its functional SNP in the microRNA-135a binding site affects bladder cancer risk. Int J Cancer. 2019;144(6):1345–1355. doi:10.1002/ijc.31757
  • Tian HQ, Chen XY, Lu Y, et al. Association of VDR and CYP2R1 polymorphisms with mite-sensitized persistent allergic rhinitis in a Chinese population. PLoS One. 2015;10(7):e0133162. doi:10.1371/journal.pone.0133162
  • Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–265. doi:10.1093/bioinformatics/bth457
  • Miyazono K, Katsuno Y, Koinuma D, et al. Intracellular and extracellular TGF-β signaling in cancer: some recent topics. Front Med. 2018;12(4):387–411. doi:10.1007/s11684-018-0646-8
  • Meyer-Martin H, Hahn SA, Beckert H, et al. GARP inhibits allergic airway inflammation in a humanized mouse model. Allergy. 2016;71(9):1274–1283. doi:10.1111/all.12883
  • Grant CR, Liberal R, Mieli-Vergani G, et al. Regulatory T-cells in autoimmune diseases: challenges, controversies and–yet–unanswered questions. Autoimmun Rev. 2015;14(2):105–116. doi:10.1016/j.autrev.2014.10.012
  • Iizuka-Koga M, Nakatsukasa H, Ito M, et al. Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. J Autoimmun. 2017;83:113–121. doi:10.1016/j.jaut.2017.07.002
  • DeVries A, Vercelli D. Of pleiotropy and trajectories: Does the TGF-β pathway link childhood asthma and chronic obstructive pulmonary disease? J Allergy Clin Immunol. 2018;141(6):1992–1996. doi:10.1016/j.jaci.2018.04.012
  • Ojiaku CA, Yoo EJ, Panettieri RA Jr. Transforming growth factor β1 function in airway remodeling and hyperresponsiveness. The missing link? Am J Respir Cell Mol Biol. 2017;56(4):432–442. doi:10.1165/rcmb.2016-0307TR
  • Metelli A, Salem M, Wallace CH, et al. Immunoregulatory functions and the therapeutic implications of GARP-TGF-β in inflammation and cancer. J Hematol Oncol. 2018;11(1):24. doi:10.1186/s13045-018-0570-z
  • Salem M, Wallace C, Velegraki M, et al. GARP dampens cancer immunity by sustaining function and accumulation of regulatory T cells in the colon. Cancer Res. 2019;79(6):1178–1190. doi:10.1158/0008-5472.CAN-18-2623
  • Vermeersch E, Liénart S, Collignon A, et al. Deletion of GARP on mouse regulatory T cells is not sufficient to inhibit the growth of transplanted tumors. Cell Immunol. 2018;332:129–133. doi:10.1016/j.cellimm.2018.07.011
  • Dedobbeleer O, Stockis J, van der Woning B, et al. Cutting Edge: Active TGF-β1 released from GARP/TGF-β1 complexes on the surface of stimulated human B lymphocytes increases class-switch recombination and production of IgA. J Immunol. 2017;199(2):391–396. doi:10.4049/jimmunol.1601882
  • Wallace CH, Wu BX, Salem M, et al. B lymphocytes confer immune tolerance via cell surface GARP-TGF-β complex. JCI Insight. 2018;3(7):e99863. doi:10.1172/jci.insight.99863
  • Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol. 2020;101:123–139. doi:10.1016/j.semcdb.2019.12.010
  • de Streel G, Bertrand C, Chalon N, et al. Selective inhibition of TGF-β1 produced by GARP-expressing Tregs overcomes resistance to PD-1/PD-L1 blockade in cancer. Nat Commun. 2020;11(1):4545. doi:10.1038/s41467-020-17811-3
  • Sharma Y, Miladi M, Dukare S, et al. A pan-cancer analysis of synonymous mutations. Nat Commun. 2019;10(1):2569. doi:10.1038/s41467-019-10489-2
  • Noval Rivas M, Chatila TA. Regulatory T cells in allergic diseases. J Allergy Clin Immunol. 2016;138(3):639–652. doi:10.1016/j.jaci.2016.06.003
  • Eggenhuizen PJ, Ng BH, Ooi JD. Treg enhancing therapies to treat autoimmune diseases. Int J Mol Sci. 2020;21(19):7015. doi:10.3390/ijms21197015
  • Ferreira MA, Matheson MC, Duffy DL, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378(9795):1006–1014. doi:10.1016/S0140-6736(11)60874-X
  • Ali Syeda Z, Langden SSS, Munkhzul C, et al. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723. doi:10.3390/ijms21051723