368
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Epidemiological Characteristics, Pathogenesis and Clinical Implications of Sinusitis in the Era of COVID-19: A Narrative Review

, , , , , ORCID Icon, ORCID Icon, , & show all
Pages 201-211 | Received 23 Nov 2022, Accepted 12 Jan 2023, Published online: 27 Jan 2023

References

  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi:10.1038/s41586-020-2012-7
  • Gorbalenya AE, Baker SC, Baric RS. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. doi:10.1038/s41564-020-0695-z
  • Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect. 2020;80(4):388–393. doi:10.1016/j.jinf.2020.02.016
  • Mullol J, Alobid I, Mariño-Sánchez F, et al. The loss of smell and taste in the COVID-19 outbreak: a tale of many countries. Curr Allergy Asthma Rep. 2020;20(10):61. doi:10.1007/s11882-020-00961-1
  • Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Archiv Oto-Rhino-Laryngol. 2020;277(8):2251–2261. doi:10.1007/s00405-020-05965-1
  • Moein ST, Hashemian SM, Mansourafshar B, Khorram-Tousi A, Tabarsi P, Doty RL. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020;10(8):944–950. doi:10.1002/alr.22587
  • Izquierdo-Dominguez A, Rojas-Lechuga MJ, Mullol J, Alobid I. Olfactory dysfunction in the COVID-19 outbreak. J Investig Allergol Clin Immunol. 2020;30(5):317–326. doi:10.18176/jiaci.0567
  • Rojas-Lechuga MJ, Izquierdo-Domínguez A, Chiesa-Estomba C, et al. Chemosensory dysfunction in COVID-19 out-patients. Eur Archiv Oto-Rhino-Laryngol. 2021;278(3):695–702. doi:10.1007/s00405-020-06266-3
  • Kim DW, Heo ST, Jeon SY, et al. Invasive paranasal mucormycosis with peripheral eosinophilia in an immunocompetent patient. Med Mycol. 2010;48(2):406–409. doi:10.1080/13693780903177790
  • Fekkar A, Lampros A, Mayaux J, et al. Occurrence of invasive pulmonary fungal infections in patients with severe COVID-19 admitted to the ICU. Am J Respir Crit Care Med. 2021;203(3):307–317. doi:10.1164/rccm.202009-3400OC
  • Lee SW, Kim SY, Moon SY, et al. Estimating COVID-19 infection and severity risks in patients with chronic rhinosinusitis: a Korean nationwide cohort study. J Allergy Clin Immunol Pract. 2021;9(6):2262–2271.e2. doi:10.1016/j.jaip.2021.03.044
  • Wang H, Song J, Pan L, et al. The characterization of chronic rhinosinusitis in hospitalized patients with COVID-19. J Allergy Clin Immunol Pract. 2020;8(10):3597–3599.e2. doi:10.1016/j.jaip.2020.09.013
  • Sbeih F, Gutierrez J, Saieed G, Chaaban MR. Chronic rhinosinusitis is associated with increased risk of COVID-19 hospitalization. Am J Otolaryngol. 2022;43(4):103469. doi:10.1016/j.amjoto.2022.103469
  • Workman AD, Bhattacharyya N. Do patients with chronic rhinosinusitis exhibit elevated rates of covid-19 infection? Laryngoscope. 2022;132(2):257–258. doi:10.1002/lary.29961
  • Miller LE, Bhattacharyya N. Risk of COVID-19 infection among chronic rhinosinusitis patients receiving oral corticosteroids. Otolaryngol Head Neck Surg. 2022;166(1):183–185. doi:10.1177/01945998211006931
  • Deja M, Busch T, Bachmann S, et al. Reduced nitric oxide in sinus epithelium of patients with radiologic maxillary sinusitis and sepsis. Am J Respir Crit Care Med. 2003;168(3):281–286. doi:10.1164/rccm.200207-640OC
  • Huyett P, Rowan NR, Ferguson BJ, Lee S, Wang EW. The relationship of paranasal sinus opacification to hospital-acquired pneumonia in the neurologic intensive care unit patient. J Intensive Care Med. 2019;34(10):844–850. doi:10.1177/0885066617718458
  • Keswani A, Dunn NM, Manzur A, et al. The clinical significance of Specific Antibody Deficiency (SAD) severity in chronic rhinosinusitis (CRS). J Allergy Clin Immunol Pract. 2017;5(4):1105–1111. doi:10.1016/j.jaip.2016.11.033
  • Roland LT, Pinto JM, Naclerio RM. The treatment paradigm of chronic rhinosinusitis with nasal polyps in the COVD-19 era. J Allergy Clin Immunol Pract. 2020;8(8):2492–2494. doi:10.1016/j.jaip.2020.06.029
  • Cho SH, Hamilos DL, Han DH, Laidlaw TM. Phenotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract. 2020;8(5):1505–1511. doi:10.1016/j.jaip.2019.12.021
  • Cho GS, Moon BJ, Lee BJ, et al. High rates of detection of respiratory viruses in the nasal washes and mucosae of patients with chronic rhinosinusitis. J Clin Microbiol. 2013;51(3):979–984. doi:10.1128/jcm.02806-12
  • Wynne M, Atkinson C, Schlosser RJ, Mulligan JK. Contribution of epithelial cell dysfunction to the pathogenesis of chronic rhinosinusitis with nasal polyps. Am J Rhinol Allergy. 2019;33(6):782–790. doi:10.1177/1945892419868588
  • Kimura H, Francisco D, Conway M, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020;146(1):80–88.e8. doi:10.1016/j.jaci.2020.05.004
  • Hou YJ, Okuda K, Edwards CE, et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 2020;182(2):429–446.e14. doi:10.1016/j.cell.2020.05.042
  • Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–687. doi:10.1038/s41591-020-0868-6
  • Hwang JW, Lee KJ, Choi IH, Han HM, Kim TH, Lee SH. Decreased expression of type I (IFN-β) and type III (IFN-λ) interferons and interferon-stimulated genes in patients with chronic rhinosinusitis with and without nasal polyps. J Allergy Clin Immunol. 2019;144(6):1551–1565.e2. doi:10.1016/j.jaci.2019.08.010
  • Morse JC, Li P, Ely KA, et al. Chronic rhinosinusitis in elderly patients is associated with an exaggerated neutrophilic proinflammatory response to pathogenic bacteria. J Allergy Clin Immunol. 2019;143(3):990–1002.e6. doi:10.1016/j.jaci.2018.10.056
  • Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19. doi:10.1016/j.cell.2020.04.035
  • Bachert C, Desrosiers MY, Hellings PW, Laidlaw TM. The role of biologics in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract. 2021;9(3):1099–1106. doi:10.1016/j.jaip.2020.11.017
  • Förster-Ruhrmann U, Szczepek AJ, Bachert C, Olze H. COVID-19 in a patient with severe chronic rhinosinusitis with nasal polyps during therapy with dupilumab. J Allergy Clin Immunol. 2020;146(1):218–220.e2. doi:10.1016/j.jaci.2020.05.005
  • Akhlaghi A, Darabi A, Mahmoodi M, et al. The frequency and clinical assessment of COVID-19 in patients with chronic rhinosinusitis. Ear Nose Throat J. 2021;1455613211038070. doi:10.1177/01455613211038070
  • von Bartheld CS, Hagen MM, Butowt R. Prevalence of chemosensory dysfunction in COVID-19 patients: a systematic review and meta-analysis reveals significant ethnic differences. ACS Chem Neurosci. 2020;11(19):2944–2961. doi:10.1021/acschemneuro.0c00460
  • Haehner A, Draf J, Dräger S, de With K, Hummel T. Predictive value of sudden olfactory loss in the diagnosis of COVID-19. ORL. 2020;82(4):175–180. doi:10.1159/000509143
  • Gerkin RC, Ohla K, Veldhuizen MG, et al. Recent smell loss is the best predictor of COVID-19 among individuals with recent respiratory symptoms. Chem Senses. 2021;46. doi:10.1093/chemse/bjaa081
  • Pellegrino R, Cooper KW, Di Pizio A, Joseph PV, Bhutani S, Parma V. Corona viruses and the chemical senses: past, present, and future. Chem Senses. 2020;45:415–422. doi:10.1093/chemse/bjaa031
  • Parma V, Ohla K, Veldhuizen MG, et al. More than smell-COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem Senses. 2020;45(7):609–622. doi:10.1093/chemse/bjaa041
  • Huart C, Philpott C, Konstantinidis I, et al. Comparison of COVID-19 and common cold chemosensory dysfunction. Rhinology. 2020;58(6):623–625. doi:10.4193/Rhin20.251
  • Hannum ME, Ramirez VA, Lipson SJ, et al. Objective sensory testing methods reveal a higher prevalence of olfactory loss in COVID-19-positive patients compared to subjective methods: a systematic review and meta-analysis. Chem Senses. 2020;45(9):865–874. doi:10.1093/chemse/bjaa064
  • Landis BN, Hummel T, Hugentobler M, Giger R, Lacroix JS. Ratings of overall olfactory function. Chem Senses. 2003;28(8):691–694. doi:10.1093/chemse/bjg061
  • Lötsch J, Hummel T. Clinical usefulness of self-rated olfactory performance-a data science-based assessment of 6000 patients. Chem Senses. 2019;44(6):357–364. doi:10.1093/chemse/bjz029
  • de Melo GD, Lazarini F, Levallois S, et al. COVID-19-related anosmia is associated with viral persistence and inflammation in human olfactory epithelium and brain infection in hamsters. Sci Transl Med. 2021;13(596). doi:10.1126/scitranslmed.abf8396
  • Hopkins C, Lechien JR, Saussez S. More that ACE2? NRP1 may play a central role in the underlying pathophysiological mechanism of olfactory dysfunction in COVID-19 and its association with enhanced survival. Med Hypotheses. 2021;146:110406. doi:10.1016/j.mehy.2020.110406
  • Butowt R, Meunier N, Bryche B, von Bartheld CS. The olfactory nerve is not a likely route to brain infection in COVID-19: a critical review of data from humans and animal models. Acta Neuropathol. 2021;141(6):809–822. doi:10.1007/s00401-021-02314-2
  • Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31). doi:10.1126/sciadv.abc5801
  • Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555–1562. doi:10.1021/acschemneuro.0c00210
  • Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865. doi:10.1126/science.abd3072
  • Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–860. doi:10.1126/science.abd2985
  • Khan M, Yoo SJ, Clijsters M, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184(24):5932–5949.e15. doi:10.1016/j.cell.2021.10.027
  • Chakrabarti A, Denning DW, Ferguson BJ, et al. Fungal rhinosinusitis: a categorization and definitional schema addressing current controversies. Laryngoscope. 2009;119(9):1809–1818. doi:10.1002/lary.20520
  • Aribandi M, McCoy VA, Bazan C. Imaging features of invasive and noninvasive fungal sinusitis: a review. Radiographics. 2007;27(5):1283–1296. doi:10.1148/rg.275065189
  • Momeni AK, Roberts CC, Chew FS. Imaging of chronic and exotic sinonasal disease: review. AJR Am J Roentgenol. 2007;189(6 Suppl):S35–S45. doi:10.2214/ajr.07.7031
  • Madney Y, Khedr R, Ahmed N, et al. Overview and outcome of mucormycosis among children with cancer: report from the Children’s Cancer Hospital Egypt. Mycoses. 2019;62(11):984–989. doi:10.1111/myc.12915
  • Prakash H, Chakrabarti A. Global epidemiology of mucormycosis. J Fungi. 2019;5(1):26. doi:10.3390/jof5010026
  • El-Kholy NA, El-Fattah AMA, Khafagy YW. Invasive fungal sinusitis in post COVID-19 patients: a new clinical entity. Laryngoscope. 2021;131(12):2652–2658. doi:10.1002/lary.29632
  • Borrelli M, Nasrollahi T, Ulloa R, Raskin J, Ference E, Tang DM. Invasive fungal sinusitis during active COVID-19 infection. Ear Nose Throat J. 2022;1455613221112337. doi:10.1177/01455613221112337
  • Ebeid K, Gamea M, Allam A, Shehata E. Impact of COVID-19 on acute invasive fungal rhinosinusitis: a comparative study. Egypt J Ear Nose Throat Allied Sci. 2021;22(22):1–7. doi:10.21608/ejentas.2021.76357.1369
  • Ismaiel WF, Abdelazim MH, Eldsoky I, et al. The impact of COVID-19 outbreak on the incidence of acute invasive fungal rhinosinusitis. Am J Otolaryngol. 2021;42(6):103080. doi:10.1016/j.amjoto.2021.103080
  • Baghel SS, Keshri AK, Mishra P, et al. The spectrum of invasive fungal sinusitis in COVID-19 patients: experience from a tertiary care referral center in Northern India. J Fungi. 2022;8(3):223. doi:10.3390/jof8030223
  • Treviño-Gonzalez JL, Santos-Santillana KM, Maldonado-Chapa F, Morales-Del Angel JA, Gomez-Castillo P, Cortes-Ponce JR. ”Chronic granulomatous invasive fungal rhinosinusitis associated with SARS-CoV-2 infection: a case report”. Ann Med Surg. 2021;72:103129. doi:10.1016/j.amsu.2021.103129
  • Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Cureus. 2020;12(9):e10726. doi:10.7759/cureus.10726
  • Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am J Emerg Med. 2021;42:264.e5–264.e8. doi:10.1016/j.ajem.2020.09.032
  • Donovan MR, Miglani A, Lal D, Marino MJ. Factors associated with invasive fungal sinusitis in patients with COVID-19: a systematic review and single-center case series. Laryngosc Investig Otolaryngol. 2022;7:913–919. doi:10.1002/lio2.833
  • Sen M, Honavar SG, Bansal R, et al. Epidemiology, clinical profile, management, and outcome of COVID-19-associated rhino-orbital-cerebral mucormycosis in 2826 patients in India - Collaborative OPAI-IJO Study on Mucormycosis in COVID-19 (COSMIC), report 1. Indian J Ophthalmol. 2021;69(7):1670–1692. doi:10.4103/ijo.IJO_1565_21
  • Casalini G, Giacomelli A, Ridolfo A, Gervasoni C, Antinori S. Invasive fungal infections complicating COVID-19: a narrative review. J Fungi. 2021;7(11):921. doi:10.3390/jof7110921
  • Pakdel F, Ahmadikia K, Salehi M, et al. Mucormycosis in patients with COVID-19: a cross-sectional descriptive multicentre study from Iran. Mycoses. 2021;64(10):1238–1252. doi:10.1111/myc.13334
  • Fouad YA, Abdelaziz TT, Askoura A, et al. Spike in rhino-orbital-cerebral mucormycosis cases presenting to a tertiary care center during the COVID-19 pandemic. Front Med. 2021;8:645270. doi:10.3389/fmed.2021.645270
  • Joshi AR, Muthe MM, Patankar SH, Athawale A, Achhapalia Y. CT and MRI findings of invasive mucormycosis in the setting of COVID-19: experience from a single center in India. AJR. 2021;217(6):1431–1432. doi:10.2214/ajr.21.26205
  • Diwakar J, Samaddar A, Konar SK, et al. First report of COVID-19-associated rhino-orbito-cerebral mucormycosis in pediatric patients with type 1 diabetes mellitus. J Mycol Med. 2021;31(4):101203. doi:10.1016/j.mycmed.2021.101203
  • Ravani SA, Agrawal GA, Leuva PA, Modi PH, Amin KD. Rise of the phoenix: mucormycosis in COVID-19 times. Indian J Ophthalmol. 2021;69(6):1563–1568. doi:10.4103/ijo.IJO_310_21
  • Nehara HR, Puri I, Singhal V, Ih S, Bishnoi BR, Sirohi P. Rhinocerebral mucormycosis in COVID-19 patient with diabetes a deadly trio: case series from the north-western part of India. Indian J Med Microbiol. 2021;39(3):380–383. doi:10.1016/j.ijmmb.2021.05.009
  • Sen M, Lahane S, Lahane TP, Parekh R, Honavar SG. Mucor in a viral land: a tale of two pathogens. Indian J Ophthalmol. 2021;69(2):244–252. doi:10.4103/ijo.IJO_3774_20
  • Bhattacharyya A, Sarma P, Kaur H, et al. COVID-19-associated rhino-orbital-cerebral mucormycosis: a systematic review, meta-analysis, and meta-regression analysis. Indian J Pharmacol. 2021;53(6):499–510. doi:10.4103/ijp.ijp_839_21
  • Arjun R, Felix V, Niyas VKM, et al. COVID-19-associated rhino-orbital mucormycosis: a single-centre experience of 10 cases. QJM. 2022;114(11):831–834. doi:10.1093/qjmed/hcab176
  • Bayram N, Ozsaygılı C, Sav H, et al. Susceptibility of severe COVID-19 patients to rhino-orbital mucormycosis fungal infection in different clinical manifestations. Jpn J Ophthalmol. 2021;65(4):515–525. doi:10.1007/s10384-021-00845-5
  • Kursun E, Turunc T, Demiroglu YZ, Alışkan HE, Arslan AH. Evaluation of 28 cases of mucormycosis. Mycoses. 2015;58(2):82–87. doi:10.1111/myc.12278
  • Vaezi A, Moazeni M, Rahimi MT, de Hoog S, Badali H. Mucormycosis in Iran: a systematic review. Mycoses. 2016;59(7):402–415. doi:10.1111/myc.12474
  • Saedi B, Sadeghi M, Seilani P. Endoscopic management of rhinocerebral mucormycosis with topical and intravenous amphotericin B. J Laryngol Otol. 2011;125(8):807–810. doi:10.1017/s0022215111001289
  • Mohammadi R, Meidani M, Mostafavizadeh K, et al. Case series of rhinocerebral mucormycosis occurring in diabetic patients. Caspian J Intern Med. 2015;6(4):243–246.
  • Ketenci I, Unlü Y, Kaya H, et al. Rhinocerebral mucormycosis: experience in 14 patients. J Laryngol Otol. 2011;125(8):e3. doi:10.1017/s0022215111000843
  • Kermani W, Bouttay R, Belcadhi M, Zaghouani H, Ben Ali M, Abdelkéfi M. ENT mucormycosis. Report of 4 cases. Eur Ann Otorhinolaryngol Head Neck Dis. 2016;133(2):83–86. doi:10.1016/j.anorl.2015.08.027
  • Bellazreg F, Hattab Z, Meksi S, et al. Outcome of mucormycosis after treatment: report of five cases. N Microbes N Infect. 2015;6:49–52. doi:10.1016/j.nmni.2014.12.002
  • Turner JH, Soudry E, Nayak JV, Hwang PH. Survival outcomes in acute invasive fungal sinusitis: a systematic review and quantitative synthesis of published evidence. Laryngoscope. 2013;123(5):1112–1118. doi:10.1002/lary.23912
  • Hegazi R, El-Gamal M, Abdel-Hady N, Hamdy O. Epidemiology of and risk factors for type 2 diabetes in Egypt. Ann Glob Health. 2015;81(6):814–820. doi:10.1016/j.aogh.2015.12.011
  • Bakhshaee M, Bojdi A, Allahyari A, et al. Acute invasive fungal rhinosinusitis: our experience with 18 cases. Eur Archiv Oto-Rhino-Laryngol. 2016;273(12):4281–4287. doi:10.1007/s00405-016-4109-z
  • Bala K, Chander J, Handa U, Punia RS, Attri AK. A prospective study of mucormycosis in north India: experience from a tertiary care hospital. Med Mycol. 2015;53(3):248–257. doi:10.1093/mmy/myu086
  • Tamez-Pérez HE, Quintanilla-Flores DL, Rodríguez-Gutiérrez R, González-González JG, Tamez-Peña AL. Steroid hyperglycemia: prevalence, early detection and therapeutic recommendations: a narrative review. World J Diabetes. 2015;6(8):1073–1081. doi:10.4239/wjd.v6.i8.1073
  • Dallalzadeh LO, Ozzello DJ, Liu CY, Kikkawa DO, Korn BS. Secondary infection with rhino-orbital cerebral mucormycosis associated with COVID-19. Orbit. 2021;2021:1–4.
  • Juneja D, Jain R, Singh O. Practice pattern of critical care physicians in India for use of corticosteroids in COVID-19. J Assoc Physicians India. 2021;69(5):50–55.
  • Jagiasi B, Nasa P, Chanchalani G, et al. Variation in therapeutic strategies for the management of severe COVID-19 in India: a nationwide cross-sectional survey. Int J Clin Pract. 2021;75(10):e14574. doi:10.1111/ijcp.14574
  • Pradhan P, Shaikh Z, Mishra A, et al. Predisposing factors of rhino-orbital-cerebral mucormycosis in patients with COVID 19 infection. Indian J Otolaryngol Head Neck Surg. 2021;2021:1–7.
  • Moorthy A, Gaikwad R, Krishna S, et al. SARS-CoV-2, uncontrolled diabetes and corticosteroids-an unholy trinity in invasive fungal infections of the maxillofacial region? A retrospective, multi-centric analysis. J Maxillofac Oral Surg. 2021;20(3):418–425. doi:10.1007/s12663-021-01532-1
  • Singh AK, Singh R, Joshi SR, Misra A. Mucormycosis in COVID-19: a systematic review of cases reported worldwide and in India. Diabetes Metab Syndr. 2021;15(4):102146. doi:10.1016/j.dsx.2021.05.019
  • Nayak PS, Katyal I, Kumar AD, Prasheetha B, Harugop AS, Reshma R. COVID 19 associated mucormycosis: preventable risk factors leading to a better prognosis: a case series. Indian J Otolaryngol Head Neck Surg. 2022;74(2):3536–3540. doi:10.1007/s12070-022-03163-5
  • Anand CB, Senthilkumar S, Ibrahim PN, et al. Estimation of serum ferritin in mucormycosis patients and prognostication based on the ferritin value. Cureus. 2022;14(4):e24013. doi:10.7759/cureus.24013
  • Rao C. Association of serum iron studies in COVID associated mucormycosis with stage of the disease. J Assoc Physicians India. 2022;70(4):11–12.
  • Bhadania S, Bhalodiya N, Sethi Y, et al. Hyperferritinemia and the extent of mucormycosis in COVID-19 patients. Cureus. 2021;13(12):e20569. doi:10.7759/cureus.20569