216
Views
2
CrossRef citations to date
0
Altmetric
Review

Profiling the Genetic and Molecular Characteristics of Glanzmann Thrombasthenia: Can It Guide Current and Future Therapies?

ORCID Icon
Pages 581-599 | Published online: 08 Jul 2021

References

  • Caen JP, Castaldi PA, Leclerc JC, et al. Congenital bleeding disorders with long bleeding time and normal platelet count. I. Glanzmann’s thrombasthenia (Report of 15 patients). Am J Med. 1966;41(1):4–26. doi:10.1016/0002-9343(66)90003-9
  • George JN, Caen JP, Nurden AT. Glanzmann thrombasthenia: the spectrum of clinical disease. Blood. 1990;75(7):1383–1395.
  • Bellucci S, Caen J. Molecular basis of Glanzmann’s thrombasthenia and current strategies in treatment. Blood Rev. 2002;16(3):193–202. doi:10.1016/S0268-960X(02)00030-9
  • Nurden AT, Caen JP. An abnormal platelet glycoprotein in three cases of Glanzmann’s thrombasthenia. Br J Haematol. 1974;28(2):233–253. doi:10.1111/j.1365-2141.1974.tb06660.x
  • Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest. 1977;60(3):535–545. doi:10.1172/JCI108805
  • Hagen I, Nurden A, Bjerrum OJ, Solum NO, Caen J. Immunochemical evidence for protein abnormalities in platelets from patients with Glanzmann’s thrombasthenia and Bernard-Soulier syndrome. J Clin Invest. 1980;65(3):722–731. doi:10.1172/JCI109719
  • Kunicki TJ, Pidard D, Rosa JP, Nurden AT. The formation of Ca2+-dependent complexes in solution as determined by crossed immunoelectrophoresis. Blood. 1981;58(2):268–278. doi:10.1182/blood.V58.2.268.268
  • Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists and even a bend. Blood. 2008;112(8):3011–3025. doi:10.1182/blood-2008-06-077891
  • Carrell NA, Fitzgerald LA, Steiner B, Ericksen HP, Phillips DR. Structure of human platelet membrane glycoproteins IIb and IIIa as determined by electron microscopy. J Biol Chem. 1985;260(3):1743–1749. doi:10.1016/S0021-9258(18)89656-9
  • Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature. 2004;432(7013):59–67.
  • Fitzgerald LA, Steiner B, Rall SC Jr, Lo SS, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. Identity with platelet glycoprotein IIIa and similarly to “integrin”. J Biol Chem. 1987;262(9):3936–3939. doi:10.1016/S0021-9258(18)61290-6
  • Thornton MA, Poncz M, Korostishevsky M, et al. The human platelet alphaIIb gene is not closely linked to its integrin partner beta3. Blood. 1998;94(6):2039–2047. doi:10.1182/blood.V94.6.2039
  • Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel. Proc Natl Acad Sci USA. 1991;88(8):3160–3164. doi:10.1073/pnas.88.8.3160
  • French DL, Coller BS. Hematologically important mutations: glanzmann thrombasthenia. Blood Cells Mol Dis. 1997;23(3):39–51. doi:10.1006/bcmd.1997.0117
  • Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood. 2011;118(23):5996–6005. doi:10.1182/blood-2011-07-365635
  • Nurden AT, Pillois X. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia. Platelets. 2018;29(1):98–101. doi:10.1080/09537104.2017.1371291
  • Nurden AT, Pillois X, Fiore M, et al. Expanding the mutation spectrum affecting αIIbβ3 integrin in Glanzmann thrombasthenia: screening of the ITGA2B and ITGB3 genes in a large international cohort. Hum Mutat. 2015;36(5):548–561. doi:10.1002/humu.22776
  • Coller BS, Seligsohn U, West SM, Scudder LE, Norton KJ. Platelet fibrinogen and vitronectin in Glanzmann thrombasthenia: evidence consistent with specific roles for glycoprotein IIb/IIIa and alphavbeta3 integrins in platelet protein trafficking. Blood. 1991;78(10):2603–2610. doi:10.1182/blood.V78.10.2603.2603
  • Nurden AT. Should studies on Glanzmann thrombasthenia not be telling us more about cardiovascular disease and other major illnesses? Blood Rev. 2017;31(5):287–299. doi:10.1016/j.blre.2017.03.005
  • De Cuyper IM, Meinders M, van de Vijver E, et al. A novel flow cytometry-based platelet aggregation assay. Blood. 2013;121(10):e70–e80. doi:10.1182/blood-2012-06-437723
  • Rodeghiero F, Tosetto A, Abshire T, et al. ISTH/SSC bleeding assessment tool: a standardized questionnaire and a proposal for a new bleeding score for inherited bleeding disorders. J Thromb Haemost. 2010;8(9):2063–2065. doi:10.1111/j.1538-7836.2010.03975.x
  • Schlegel N, Gayet O, Morel-Kopp M-C, et al. The molecular genetic basis of Glanzmann’s thrombasthenia I a gypsy population in France: identification of a new mutation on the αIIb gene. Blood. 1995;86(3):977–982. doi:10.1182/blood.V86.3.977.977
  • Kannan M, Ahmad F, Yadav BK, Kumar R, Choudhry VP, Saxena R. Molecular defects in ITGA2B and ITGB3 genes in patients with Glanzmann thrombasthenia. J Thromb Haemost. 2009;7(11):1878–1885. doi:10.1111/j.1538-7836.2009.03579.x
  • Farsinejad A, Farajollahi MM, Kazemi A, Saemi N, Faranoush M. Different biochemical expression pattern of platelet surface glycoproteins suggests molecular diversity of Glanzmann’s thrombasthenia in Iran. Blood Coagul Fibrinolysis. 2013;24(6):613–618. doi:10.1097/MBC.0b013e328360a558
  • Fiore M, Pillois X, Nurden P, Nurden AT, Austerlitz F. Founder effect and estimation of the age of the French gypsy mutation associated with Glanzmann thrombasthenia in Manouch families. Eur J Hum Genet. 2011;19(9):981987. doi:10.1038/ejhg.2011.61
  • Zhou L, Jiang M, Shen H, et al. Clinical and molecular insights into Glanzmann’s thrombasthenia in China. Clin Genet. 2018;94(2):213–220. doi:10.1111/cge.13366
  • Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domains of GPIIb. J Clin Invest. 1995;95(4):1553–1560. doi:10.1172/JCI117828
  • Ferrer M, Fernandez-Pinel M, Gonzalez-Manchon C, Gonzalez J, Ayuso MS, Parrilla R. A mutant (Arg327->His) GPIIb associated to thrombasthenia exerts a dominant negative effect in stably transfected CHO cells. Thromb Haemost. 1996;76(3):292–301. doi:10.1055/s-0038-1650574
  • Grimaldi CM, Chen F, Wu C, Weiss HJ, Coller BS, French DL. Glycoprotein IIb Leu214Pro mutation produces Glanzmann thrombasthenia with both quantitative and qualitative abnormalities in GPIIb/IIIa. Blood. 1998;91(5):1562–1571. doi:10.1182/blood.V91.5.1562
  • Ambo H, Kamata T, Handa M, et al. Novel point mutations in the αIIb subunit (Phe289->Ser, Glu324->Lys, Gly747Pro) causing thrombasthenic phenotypes in four Japanese patients. Br J Haematol. 1998;102(3):829–840. doi:10.1046/j.1365-2141.1998.00824.x
  • Tadokoro S, Tomiyama Y, Honda S, et al. A Gln747->pro substitution in the αIIb subunit is responsible for a moderate αIIbβ3 deficiency in Glanzmann thrombasthenia. Blood. 1998;92(8):2750–2758. doi:10.1182/blood.V92.8.2750
  • Gonzalez-Manchon C, Fernandez-Pinel M, Arias-Salgado EG, et al. Molecular genetic analysis of a compound heterozygote for the glycoprotein (GP) IIb gene associated with Glanzmann’s thrombasthenia: disruption of the 674–687 disulfide bridge in GPIIb prevents surface exposure of GPIIb-IIIa complexes. Blood. 1999;93(3):866–875. doi:10.1182/blood.V93.3.866
  • Arias-Salgado EG, Butta N, Gonzalez-Manchon C, Larrucea S, Ayuso MS, Parrilla R. Competition between normal (674C) and mutant (674R)GPIIb subunits: role of the molecular chaperone BiP in the processing of GPIIb-IIIa complexes. Blood. 2001;97(9):2640–2647. doi:10.1182/blood.V97.9.2640
  • Basani RB, French DL, Vilaire G, et al. A naturally occurring mutation near the amino terminus of αIIb defines a new region involved in ligand binding to αIIbβ3. Blood. 2000;95(1):180–188. doi:10.1182/blood.V95.1.180
  • Kamata T, Tieu KK, Irie A, Springer TA, Takada Y. Amino acid residues in the αIIb subunit that are critical for ligand binding to integrin αIIbβ3 are clustered in the β-propeller model. J Biol Chem. 2001;276(47):44275–44283. doi:10.1074/jbc.M107021200
  • Mitchell WB, Li JH, Singh F, et al. Two novel mutations in the αIIb calcium-binding domains identify hydrophobic regions for αIIbβ3 biogenesis. Blood. 2003;101(6):22682276. doi:10.1182/blood-2002-07-2266
  • Jayo A, Pabon D, Lastres P, Jimenez V, Gonzalez-Manchon C. Type II Glanzmann thrombasthenia in a compound heterozygote for the αIIb gene. A novel missense mutation in exon 27. Haematologica. 2006;91(10):1352–1359.
  • Goguet M, Narwani TJ, Petermann R, Jallu V, de Brevern AG. In silico analysis of Glanzmann variants of Calf-1 domain of αIIbβ3 integrin revealed dynamic allosteric effect. Sci Rep. 2017;7(1):8001. doi:10.1038/s41598-017-08408-w
  • Pillois X, Peters P, Segers K, Nurden AT. In silico analysis of structural modifications in and around the integrin αIIb genu caused by ITGA2B variants in human platelets with emphasis on Glanzmann thrombasthenia. Mol Genet Genomic Med. 2018;6(2):249–260. doi:10.1002/mgg3.365
  • Grimaldi CM, Chen F, Scudder LE, Coller BS, French DL. A Cys374Tyr homozygous mutation of platelet glycoprotein IIIa (β3) in a Chinese patient with Glanzmann’s thrombasthenia. Blood. 1996;88(5):1666–1675. doi:10.1182/blood.V88.5.1666.1666
  • Ambo H, Kamata T, Handa M, et al. Three novel integrin β3 subunit missense mutations (H280P, C560F and G579S) in thrombasthenia, including one (H280P prevalent in Japanese patients. Biochem Biophys Res Commun. 1998;251(3):763–768. doi:10.1006/bbrc.1998.9526
  • Ward CN, Kestin AS, Newman PJ. A Leu262Pro mutation in the integrin β3 subunit results in an αIIbβ3 complex that binds fibrin but not fibrinogen. Blood. 2000;96(1):161–169. doi:10.1182/blood.V96.1.161
  • Nair S, Li J, Mitchell WB, Mohanty D, Coller BS, French DL. Two new beta3 integrin mutations in Indian patients with Glanzmann thrombasthenia: localization of mutations affecting cysteine residues in integrin beta3. Thromb Haemost. 2002;88(3):503–509. doi:10.1160/TH2002880503
  • Westrup D, Santoso S, Follert-Hagendorff K, et al. Glanzmann thrombasthenia Frankfurt I is associated with a point mutation Thr176Ile in the N-terminal region of αIIb subunit integrin. Thromb Haemost. 2004;92(5):1040–1051. doi:10.1160/TH04-03-0170
  • Morel-Kopp M-C, Melchior C, Chen P, et al. A naturally occurring point mutation in the β3 integrin MIDAS-like domain affects differently αvβ3 and αIIbβ3 receptor function. Thromb Haemost. 2001;86(6):1425–1434. doi:10.1055/s-0037-1616746
  • Chen P, Melchior C, Brons NHC, Schlegel N, Caen J, Kieffer N. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations. Identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem. 2001;276(42):38628–38635. doi:10.1074/jbc.M105737200
  • Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of the integrin αvβ3. Science. 2001;294(5541):339–345. doi:10.1126/science.1064535
  • Takagi J, Petre B, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110(5):599–601. doi:10.1016/S0092-8674(02)00935-2
  • Rosenberg N, Yatuv R, Sobolev V, Peretz H, Zivelin A, Seligsohn U. Major mutations in calf-1 and calf-2 domains of glycoprotein IIb in patients with Glanzmann thrombasthenia enable GPIIb/IIIa complex formation but impair its transport from the endoplasmic reticulum to the Golgi apparatus. Blood. 2003;101(6):4808–4815. doi:10.1182/blood-2002-08-2452
  • Gonzalez-Manchon C, Arias-Salgado EG, Butta N, et al. A novel homozygous splice junction mutation in GPIIb associated with alternative splicing, nonsense-mediated decay of GPIIb-mRNA, and type II Glanzmann’s thrombasthenia. J Thromb Haemost. 2003;1(5):1071–1078. doi:10.1046/j.1538-7836.2003.00204.x
  • Jackson DE, White MM, Jennings LK, Newman PJ. A Ser162->Leu mutation within glycoprotein (GP) IIIa (integrin αIIbβ3) results in an unstable αIIbβ3 complex that retains partial function in a novel form of type II Glanzmann thrombasthenia. Thromb Haemost. 1998;80(1):42–48. doi:10.1055/s-0037-1615136
  • Kiyoi T, Tomiyama Y, Honda S, et al. A naturally occurring Tyr143HisαIIb mutation abolishes αIIbβ3 function for soluble ligands but retains its ability for mediating cell adhesion and clot retraction: comparison with other mutations causing ligand-binding defects. Blood. 2003;101(9):3485–3491. doi:10.1182/blood-2002-07-2144
  • Flevaris P, Stojanovic A, Gong H, Chishti A, Welch E, Du X. A molecular switch that controls cell spreading and retraction. J Cell Biol. 2007;179(3):553–565. doi:10.1083/jcb.200703185
  • Loftus JC, O’Toole TE, Plow EF, Glass A, Frehlinger AL 3rd, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent-cation dependent conformation. Science. 1990;249(4971):915–918. doi:10.1126/science.2392682
  • Bajt ML, Ginsberg MH, Frelinger AL, Berndt MC, Loftus JC. A spontaneous mutation of integrin αIIbβ3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem. 1992;267(6):3789–3794. doi:10.1016/S0021-9258(19)50595-6
  • Lanza F, Stierle A, Fournier D, et al. A new variant of Glanzmann’s thrombasthenia (Strasbourg I). Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg->214Trp mutation. J Clin Invest. 1992;89(6):1995–2004. doi:10.1172/JCI115808
  • Honda S, Tomiyama Y, Shiraga M, et al. A two-amino acid insertion in the Cys146-Cys167 loop of the αIIb subunit is associated with a variant of Glanzmann thrombasthenia. J Clin Invest. 1998;102(6):1183–1192. doi:10.1172/JCI3206
  • Chen YP, Djaffar I, Pidard D, et al. Ser-752-Pro mutation in the cytoplasmic domain of integrin beta3 subunit and defective activation of platelet integrin alphaIIbbeta3 (glycoprotein IIb-IIIa) in a variant of Glanzmann thrombasthenia. Proc Natl Acad Sci USA. 1992;89(21):10169–10173. doi:10.1073/pnas.89.21.10169
  • Nurden P, Poujol C, Winckler J, Combrié R, Caen JP, Nurden AT. A Ser752->Pro substitution in the cytoplasmic domain of beta3 in a Glanzmann thrombasthenia variant fails to prevent interactions between the alphaIIbbeta3 integrin and the granule pool of fibrinogen. Br J Haematol. 2002;118(4):1143–1151. doi:10.1046/j.1365-2141.2002.03758.x
  • Wang R, Shattil SJ, Ambruso DR, Newman PJ. Truncation of the cytoplasmic domain of beta3 in a variant form of Glanzmann thrombasthenia abrogates signaling through the integrin alpha(IIb)beta3 complex. J Clin Invest. 1997;100(9):2393–2403. doi:10.1172/JCI119780
  • Vinogradova O, Velyvis A, Velyvienne A, et al. A structural mechanism of integrin alpha(IIb)beta(3) “inside-out” activation as regulated by its cytoplasmic face. Cell. 2002;110(5):587–597. doi:10.1016/S0092-8674(02)00906-6
  • Ruiz C, Liu C-Y, Sun Q-H, et al. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GPIIb-IIIa (αIIbβ3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood. 2001;98(8):2432–2441. doi:10.1182/blood.V98.8.2432
  • Mor-Cohen R, Rosenberg N, Peretz H, et al. Disulfide bond disruption by a β3-Cys549Arg mutation in six Jordanian families with Glanzmann thrombasthenia causes diminished production of constitutively active αIIbβ3. Thromb Haemost. 2007;98:1257–1265. doi:10.1160/TH07-04-0248
  • Kamata T, Ambo H, Puzon-McLaughin W, et al. Critical cysteine residues for regulation of integrin αIIbβ3 are clustered in the epidermal growth factor domains of the β3 subunit. Biochem J. 2004;378(3):1079–1082. doi:10.1042/bj20031701
  • Vanhoorelbeke K, De Meyer SF, Pareyn I, et al. The novel S527F mutation in the integrin β3 chain induces a high affinity αIIbβ3 receptor by hindering adoption of the bent conformation. J Biol Chem. 2009;284(22):14914–14920. doi:10.1074/jbc.M809167200
  • Gonzalez-Manchon C, Butta N, Larrucea S, et al. A variant thrombasthenic phenotype associated with compound heterozygosity of integrin β3-subunit (Met124Val)β3 alters the subunit dimerization rendering a decreased number of constitutive active αIIbβ3 receptors. Thromb Haemost. 2004;92(6):1377–1386. doi:10.1160/TH04-06-0380
  • Hardisty R, Pidard D, Cox A, et al. A defect of platelet aggregation associated with an abnormal distribution of glycoprotein IIb-IIIa complexes within the platelet: the cause of a lifelong bleeding disorder. Blood. 1992;80(3):696–708. doi:10.1182/blood.V80.3.696.696
  • Peyruchaud O, Nurden AT, Milet S, et al. An Arg995 ® to Gln (Q) aminoacid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin IIb subunit in a patient with an unusual variant form of Glanzmann’s thrombasthenia. Blood. 1998;92(11):4178–4187. doi:10.1182/blood.V92.11.4178
  • Hughes PE, Diaz-Gonzalez F, Leong L, et al. Breaking the integrin hinge. A defined structural constraint regulates integrin signaling. J Biol Chem. 1996;271(12):6571–6574. doi:10.1074/jbc.271.12.6571
  • Kunishima S, Kashiwagi H, Otsu M, et al. Heterozygous ITGA2B R995W mutation inducing constitutive activation of the alphaIIbbeta3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood. 2011;117(2):5479–5484. doi:10.1182/blood-2010-12-323691
  • Ghevaert C, Salamann A, Watkins NA, et al. A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and the macrothrombocytopenia. Blood. 2008;111(7):3407–3414. doi:10.1182/blood-2007-09-112615
  • Favier M, Bordet J-C, Favier R, et al. Mutations of the αIIb/β3 intracytoplasmic salt bridge cause macrothrombocytopenia and enlarged platelet α-granules. Am J Haematol. 2017;93(2):195–204. doi:10.1002/ajh.24958
  • Morais S, Oliveira S, Lau C, et al. αIIbβ3 variants in ten families with autosomal dominant macrothrombocytopenia: expanding the mutational and clinical spectrum. PLoS One. 2020;15(12):e0235136. doi:10.1371/journal.pone.0235136
  • Gresele P, Falcinelli E, Giannini S, et al. Dominant inheritance of a novel integrin beta3 mutation associated with a hereditary macrothrombocytopenia and platelet dysfunction in two Italian families. Haematologica. 2009;94(5):663–669. doi:10.3324/haematol.2008.002246
  • Jayo A, Conde I, Lastres P, et al. L718P mutation in the membrane-proximal cytoplasmic tail of beta3 promotes abnormal alphaIIbbeta3 clustering and lipid domain coalescence and associates with a thrombasthenia-like phenotype. Haematologica. 2010;95(7):1158–1166. doi:10.3324/haematol.2009.018572
  • Nurden P, Bordet JC, Pillois X, Nurden AT. An intracytoplasmic β3 Leu718 deletion in a patient with a novel platelet phenotype. Blood Adv. 2017;1(8):494–499. doi:10.1182/bloodadvances.2016002808
  • Nurden AT, Nurden P. Inherited thrombocytopenias: history advances and perspectives. Haematologica. 2020;105(8):2004–2019. doi:10.3324/haematol.2019.233197
  • Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica. 2021;106(2):337–350. doi:10.3324/haematol.2020.248153
  • Peretz H, Rosenberg N, Landau M, et al. Molecular diversity of Glanzmanns thrombasthenia in Southern India: new insights into mRNA splicing and structure-function correlations of alphaIIbbeta3 integrin (ITGA2B, ITGB3). Hum Mutat. 2006;27(4):359–369. doi:10.1002/humu.20304
  • Nelson EJR, Nair SC, Peretz H, et al. Diversity of Glanzmann thrombasthenia in Southern India: 10 novel mutations identified among 15 unrelated patients. J Throm Haemost. 2006;4(8):1730–1737. doi:10.1111/j.1538-7836.2006.02066.x
  • Jallu V, Dusseaux M, Panzer S, et al. αIIbβ3 integrin: new allelic variants in Glanzmann thrombasthenia. Effects on ITGA2B and ITGB3 mRNA splicing, expression, and structure-function. Hum Mutat. 2009;31(3):237–246. doi:10.1002/humu.21179
  • Sandrock-Lang K, Oldenburg J, Wiegering V, et al. Characterization of patients with Glanzmann thrombasthenia and identification of 17 novel mutations. Thromb Haemost. 2015;113:782–791. doi:10.1160/TH14-05-0479
  • Robert P, Canault M, Farnarier C, et al. A novel leukocyte adhesion deficiency III variant: kindlin-3 deficiency results in integrin and non-integrin related defects in late steps of leukocyte adhesion. J Immunol. 2011;186(9):5273–5283. doi:10.4049/jimmunol.1003141
  • Desai A, Bergmeier W, Canault M, et al. Phenotype analysis and clinical management in a large family with a novel truncating mutation in RASGRP2, the CaLDAG-GEFI encoding gene. Res Pract Thromb Haemost. 2017;1(1):128–133. doi:10.1002/rth2.12019
  • Podolnikova NP, Gorkun OV, Loreth RM, Yee VC, Lord ST, Ugarova TP. A cluster of basic amino acid residues in the γ370–380 sequence of fibrinogen comprises a binding site for platelet integrin αIIbβ3 (GPIIb/IIIa). Biochemistry. 2005;44(51):1620–2630. doi:10.1021/bi051581d
  • Podolnikova NP, Yakovlev S, Yakubenko VP, Wang X, Gorkun OV, Ugarova TP. The interaction of integrin αIIbβ3 with fibrin occurs through multiple binding sites in the αIIb β-propeller domain. J Biol Chem. 2014;289(4):2371–2383. doi:10.1074/jbc.M113.518126
  • Mammadova-Bach E, Ollivier V, Loyau S, et al. Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood. 2015;126:683–691. doi:10.1182/blood-2015-02-629717
  • Alshehri OM, Hughes CE, Montague S, et al. Fibrin activates GPVI in human and mouse platelets. Blood. 2015;126:1601–1608. doi:10.1182/blood-2015-04-641654
  • Onsalaer M-B, Hardy AT, Wilson C, et al. Fibrin and D-dimer bind to monomeric GPVI. Blood Adv. 2017;1(19):1495–1504. doi:10.1182/bloodadvances.2017007732
  • Perrella G, Huang J, Provenzale I, et al. Nonredundant roles of platelet glycoprotein VI and integrin αIIbβ3 in fibrin-mediated microthrombus formation. Arterioscler Thromb Vasc Biol. 2021;41(2):e97–e111. doi:10.1161/ATVBAHA.120.314641
  • Nurden AT. Clinical significance of altered collagen receptor functioning in platelets with emphasis on GPVI. Blood Rev. 2019;38:100592. doi:10.1016/j.blre.2019.100592
  • McGregor JL, Clemetson KJ, James E, et al. Glycoproteins of platelet membranes from Glanzmann’s thrombasthenia. A comparison with normal using carbohydrate-specific or protein-specific labeling techniques and high-resolution two-dimensional gel electrophoresis. Eur J Biochem. 1981;116(2):379–388. doi:10.1111/j.1432-1033.1981.tb05346.x
  • Loroch S, Trabold K, Gambaryan S, et al. Alterations of the platelet proteome in type I Glanzmann thrombasthenia caused by different homozygous delG frameshift mutations in ITGA2B. Thromb Haemost. 2017;117(3):556–569. doi:10.1160/TH16-07-0515
  • Blair TA, Michelson AD, Frelinger AL III. Mass cytometry reveals distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins in Glanzmann thrombasthenia. Sci Rep. 2018;8(1):10300. doi:10.1038/s41598-018-28211-5
  • Megy K, Downes K, Simeoni I, et al. Curated disease-causing genes for thrombotic, and platelet disorders; Communication from the SSC of the ISTH. J Thromb Haemost. 2019;17(8):1253–1260. doi:10.1111/jth.14479
  • Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost. 2020;18(8):1839–1845. doi:10.1111/jth.14945
  • Buitrago L, Rendon A, Liang Y, et al.,;. αIIbβ3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci USA. 2015;112:E1898–1907. doi:10.1073/pnas.1422238112
  • Pillois X, Nurden AT. Linkage disequilibrium amongst ITGA2B and ITGB3 gene variants in patients with Glanzmann thrombasthenia confirms that most disease-causing mutations are recent. Br J Haematol. 2016;175(4):686–695. doi:10.1111/bjh.14283
  • Di Minno G, Zotz RB, d’Oiron R, et al. The international, prospective Glanzmann Thrombasthenia Registry: treatment modalities and outcomes of non-surgical bleeding episodes in patients with Glanzmann thrombasthenia. Haematologica. 2015;100(8):1031–1037. doi:10.3324/haematol.2014.121475
  • Poon MC, Di Minno MN, d’Oiron R, Zotz RB. New insights into the treatment of Glanzmann thrombasthenia. Transfus Med Rev. 2016;30(2):92–99. doi:10.1016/j.tmrv.2016.01.001
  • Al-Battat S, Rand ML, Bouskill V, et al. Glanzmann thrombasthenia platelets compete with transfused platelets, reducing the haemostatic impact of platelet transfusions. Br J Haematol. 2018;81(3):410–413. doi:10.1111/bjh.14623
  • Fiore M, Firah N, Pillois X, Nurden P, Heilig R, Nurden AT. Natural history of platelet antibody formation against αIIbβ3 in a French cohort of Glanzmann thrombasthenia patients. Haemophilia. 2012;18(3):201–209. doi:10.1111/j.1365-2516.2011.02744.x
  • Nurden AT. Acquired antibodies to αIIbβ3 in Glanzmann thrombasthenia; From transfusion and pregnancy to bone marrow transplants and beyond. Transfus Med Rev. 2018;S0887-7963(18)30037–3. doi:10.1016/j.tmrv.2018.05.002
  • Leticée N, Kaplan C, Lémery D. Pregnancy in mother with Glanzmann’s thrombasthenia and isoantibody against GP IIb-IIIa: is there a foetal risk? Eur J Obstet Gynecol Reprod Biol. 2005;121(2):138–142. doi:10.1016/j.ejogrb.2005.02.011
  • Santoso S, Wihadmadyatami H, Bakchtoul T, et al. Anti-endothelial αvβ3 antibodies are a major cause of intracranial bleeding in fetal-neonatal alloimmune thrombocytopenia. Arterioscler Thromb Vasc Biol. 2016;36(8):1517–1524. doi:10.1161/ATVBAHA.116.307281
  • Fiore M, Bayat B, Phuangtham R, et al. Immunization against both αIIbβ3 and αvβ3 in Glanzmann thrombasthenia patients carrying the French gypsy mutation. J Thromb Haemost. 2021;19(1):255–261. doi:10.1111/jth.15117
  • Guillet B, Bayart S, Pillois X, Nurden P, Caen JP, Nurden AT. A Glanzmann thrombasthenia family associated with a TUBB1-related macrothrombocytopenia. J Thromb Haemost. 2019;17(12):2221. doi:10.1111/jth.14622
  • Deshpande R, Shanbhag S, Jadii A, Shetty S. A rare case of Glanzmann’s thrombasthenia and factor VII deficiency due to a combination of pathogenic and non-pathogenic gene variants. Haemophilia. 2020;26(1):e26–e27. doi:10.1111/hae.13898
  • Owaidah T, Saleh M, Baz B, et al. Molecular yield of targeted sequencing for Glanzmann thrombasthenia patients. NPJ Genom Med. 2019;4:4. doi:10.1038/s41525-019-0079-6
  • Bellucci S, Damaj G, Boval B, et al. Bone marrow transplantation in severe Glanzmann’s thrombasthenia with antiplatelet alloimmunization. Bone Marrow Transplant. 2000;25(3):327–330. doi:10.1038/sj.bmt.1702139
  • Flood V, Johnson FL, Boshkov LK, et al. Sustained engraftment post bone marrow transplant despite anti-platelet antibodies in Glanzmann thrombasthenia. Pediatr Blood Cancer. 2005;45(7):971–975. doi:10.1002/pbc.20365
  • Fang J, Hodivala-Dilke K, Johnson BD, et al. Therapeutic expression of the platelet-specific integrin, αIIbβ3, in a murine model for Glanzmann thrombasthenia. Blood. 2005;106(8):2671–2679. doi:10.1182/blood-2004-12-4619
  • Fang J, Jensen ES, Boudreaux MK, et al. Platelet gene therapy improves hemostatic function for integrin αIIbβ3-deficient dogs. Proc Natl Acad Sci USA. 2011;108(23):9583–9588. doi:10.1073/pnas.1016394108
  • Sullivan KA, Mills JA, Koukouritaki SB, et al. High-level transgene expression in induced pluripotent stem-cell derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood. 2013;124(5):753–757.
  • Hu L, Du L, Zhao Y, et al. Modeling Glanzmann thrombasthenia using patient specific iPSCs and restoring platelet aggregation function by CD41 overexpression. Stem Cell Res. 2017;2:14–20. doi:10.1016/j.scr.2017.02.003
  • Zhang N, Zhi H, Curtis BR, et al. CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes. Blood. 2016;127(6):675–680. doi:10.1182/blood-2015-10-675751
  • Engin MMN. Bleeding disorders associated with abnormal platelets: glanzmann thrombasthenia and Bernard-Soulier syndrome. Platelets. 2020. doi:10.5772/intechopen.9329