273
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Markers of Renal Complications in Beta Thalassemia Patients with Iron Overload Receiving Chelation Agent Therapy: A Systematic Review

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 725-738 | Received 03 Sep 2022, Accepted 18 Nov 2022, Published online: 28 Nov 2022

References

  • Andani CN, Aman AK, Hariman H, Lubis B. Cytogenetic mutation in a family with sickle-cell beta-thalassemia in North Sumatera, Medan, Indonesia: a preliminary study. Bali Med J. 2019;8(2):623. doi:10.15562/bmj.v8i2.1417
  • Setianingsih I, Harahap A, Nainggolan IM. Alpha thalassaemia in Indonesia: phenotypes and molecular defects. Adv Exp Med Biol. 2003;531:47–56. doi:10.1007/978-1-4615-0059-9_4
  • Nafea OE, Zakaria M, Hassan T, El Gebaly SM, Salah HE. Subclinical nephrotoxicity in patients with beta-thalassemia: role of urinary kidney injury molecule. Drug Chem Toxicol. 2022;45(1):93–102. doi:10.1080/01480545.2019.1660362
  • Demosthenous C, Vlachaki E, Apostolou C, et al. Beta-thalassemia: renal complications and mechanisms: a narrative review. Hematology. 2019;24(1):426–438. doi:10.1080/16078454.2019.1599096
  • Bakr A, Al-Tonbary Y, Osman G, El-Ashry R. Renal complications of beta-thalassemia major in children. Am J Blood Res. 2014;4(1):1–6.
  • Mehrvar A, Azarkeivan A, Faranoush M, et al. Endocrinopathies in patients with transfusion-dependent beta-thalassemia. Pediatr Hematol Oncol. 2008;25(3):187–194. doi:10.1080/08880010801938207
  • Cappellini MD. Coagulation in the pathophysiology of hemolytic anemias. Hematol Am Soc Hematol Educ Prog. 2007;2007:74–78. doi:10.1182/asheducation-2007.1.74
  • Cetinkaya PU, Azik FM, Karakus V, Huddam B, Yilmaz N. β2-microglobulin, neutrophil gelatinase-associated lipocalin, and endocan values in evaluating renal functions in patients with β-thalassemia major. Hemoglobin. 2020;44(3):147–152. doi:10.1080/03630269.2020.1766486
  • Karaman K, Şahin S, Geylan H, et al. Evaluation of renal function disorder with urinary neutrophil gelatinase-associated lipocalin level in patients with β-thalassemia major. J Pediatr Hematol Oncol. 2019;41(7):507–510. doi:10.1097/MPH.0000000000001577
  • Badeli H, Baghersalimi A, Eslami S, et al. Early kidney damage markers after deferasirox treatment in patients with thalassemia major: a case-control study. Oxid Med Cell Longev. 2019;2019:5461617. doi:10.1155/2019/5461617
  • Şen V, Ece A, Uluca Ü, et al. Urinary early kidney injury molecules in children with beta-thalassemia major. Ren Fail. 2015;37(4):607–613. doi:10.3109/0886022X.2015.1007871
  • Pinto VM, Forni GL. Management of iron overload in beta-thalassemia patients: clinical practice update based on case series. Int J Mol Sci. 2020;21(22):8771. doi:10.3390/ijms21228771
  • Casale M, Picariello S, Corvino F, et al. Life-threatening drug-induced liver injury in a patient with β-thalassemia major and severe iron overload on polypharmacy. Hemoglobin. 2018;42(3):213–216. doi:10.1080/03630269.2018.1503187
  • Yii E, Doery JC, Kaplan Z, Kerr PG. Use of deferasirox (Exjade) for iron overload in peritoneal dialysis patients. Nephrology. 2018;23(9):887–889. doi:10.1111/nep.13389
  • Fouad IZ, ElNahid MS, Youssef MF, Amroussy YM. Urinary neutrophil gelatinase-associated lipocalin as a marker of kidney injury in Egyptian patients with thalassemia. Egypt J Intern Med. 2019;31(3):343–352. doi:10.4103/ejim.ejim_114_18
  • Smolkin V, Halevy R, Levin C, et al. Renal function in children with β-thalassemia major and thalassemia intermedia. Pediatr Nephrol. 2008;23(10):1847–1851. doi:10.1007/s00467-008-0897-8
  • Aldudak B, Karabay Bayazit A, Noyan A, et al. Renal function in pediatric patients with beta-thalassemia major. Pediatr Nephrol. 2000;15(1–2):109–112. doi:10.1007/s004670000434
  • Tanous O, Azulay Y, Halevy R, et al. Renal function in β-thalassemia major patients treated with two different iron-chelation regimes. BMC Nephrol. 2021;22(1):418. doi:10.1186/s12882-021-02630-5
  • Bekhit OE, El Dash HH, Ahmed MS. Early detection of kidney dysfunction in Egyptian patients with beta-thalassemia major. Egypt Pediatr Assoc Gazette. 2017;65(3):85–89. doi:10.1016/j.epag.2017.02.002
  • ElAlfy MS, Khalil Elsherif NH, Ebeid FSE, et al. Renal iron deposition by magnetic resonance imaging in pediatric β-thalassemia major patients: relation to renal biomarkers, total body iron and chelation therapy. Eur J Radiol. 2018;103:65–70. doi:10.1016/j.ejrad.2018.04.007
  • Ali BA, Mahmoud AM. Frequency of glomerular dysfunction in children with Beta thalassaemia major. Sultan Qaboos Univ Med J. 2014;14(1):e88–94. doi:10.12816/0003341
  • Arman Bilir Ö, Kirkiz S, Fettah A, et al. Renal function and the oxidative status among children with thalassemia major and healthy controls: a cross-sectional study. Transfus Apher Sci. 2020;59(4):102746. doi:10.1016/j.transci.2020.102746
  • Annayev A, Karakaş Z, Karaman S, Yalçıner A, Yılmaz A, Emre S. Glomerular and tubular functions in children and adults with transfusion-dependent thalassemia. Turk J Haematol. 2018;35(1):66–70. doi:10.4274/tjh.2017.0266
  • Behairy OG, Abd Almonaem ER, Abed NT, et al. Role of serum cystatin-C and beta-2 microglobulin as early markers of renal dysfunction in children with beta thalassemia major. Int J Nephrol Renovasc Dis. 2017;10:261–268. doi:10.2147/IJNRD.S142824
  • Economou M, Printza N, Teli A, et al. Renal dysfunction in patients with beta-thalassemia major receiving iron chelation therapy either with deferoxamine and deferiprone or with deferasirox. Acta Haematol. 2010;123(3):148–152. doi:10.1159/000287238
  • Schrezenmeier EV, Barasch J, Budde K, Westhoff T, Schmidt-Ott KM. Biomarkers in acute kidney injury - pathophysiological basis and clinical performance. Acta Physiologica. 2017;219(3):554–572. doi:10.1111/apha.12764
  • Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55(8):1074–1089. doi:10.1515/cclm-2016-0973
  • Goldstein SL, Devarajan P. Progression from acute kidney injury to chronic kidney disease: a pediatric perspective. Adv Chronic Kidney Dis. 2008;15(3):278–283. doi:10.1053/j.ackd.2008.04.007
  • Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P, Barasch J. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 2012;1823(9):1451–1458. doi:10.1016/j.bbamcr.2012.06.014
  • Patel ML, Sachan R, Verma A, Kamal R, Gupta KK. Neutrophil gelatinase-associated lipocalin as a biomarker of disease progression in patients with chronic kidney disease. Indian J Nephrol. 2016;26(2):125–130. doi:10.4103/0971-4065.157799
  • Mohammed M, Mohammad J, Fathi Z, Al-Hamdany M, Alkazzaz N. Comparative evaluation of cystatin C and neutrophil gelatinase-associated lipocalin in patients with thalassemia major versus thalassemia intermedia. Pharmacia. 2021;68(4):741–746. doi:10.3897/pharmacia.68.e71475
  • Mårtensson J, Martling CR, Bell M. Novel biomarkers of acute kidney injury and failure: clinical applicability. Br J Anaesth. 2012;109(6):843–850. doi:10.1093/bja/aes357
  • Jalali A, Khalilian H, Ahmadzadeh A, et al. Renal function in transfusion-dependent pediatric beta-thalassemia major patients. Hematology. 2011;16(4):249–254. doi:10.1179/102453311X12953015767662
  • Musallam KM, Taher AT. Mechanisms of renal disease in β-thalassemia. J Am Soc Nephrol. 2012;23(8):1299–1302. doi:10.1681/ASN.2011111070
  • Tantawy AA, El Bablawy N, Adly AA, Ebeid FS. Early predictors of renal dysfunction in Egyptian patients with β-thalassemia major and intermedia. Mediterr J Hematol Infect Dis. 2014;6(1):e2014057. doi:10.4084/mjhid.2014.057
  • Waring WS, Moonie A. Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol. 2011;49(8):720–728. doi:10.3109/15563650.2011.615319
  • Sánchez-González PD, López-Hernandez FJ, Morales AI, Macías-Nuñez JF, López-Novoa JM. Effects of deferasirox on renal function and renal epithelial cell death. Toxicol Lett. 2011;203(2):154–161. doi:10.1016/j.toxlet.2011.03.018
  • Tantawy AA, Adly AA, Ismail EA, Aly SH. Endothelial nitric oxide synthase gene intron 4 variable number tandem repeat polymorphism in β-thalassemia major: relation to cardiovascular complications. Blood Coagulat Fibrinolysis. 2015;26(4):419–425. doi:10.1097/MBC.0000000000000277
  • Randers E, Erlandsen EJ, Pedersen OL, Hasling C, Danielsen H. Serum cystatin C as an endogenous parameter of the renal function in patients with normal to moderately impaired kidney function. Clin Nephrol. 2000;54(3):203–209.
  • Hashemieh M, Radfar M, Azarkeivan A, et al. Renal hemosiderosis among Iranian transfusion dependent β-thalassemia major patients. Int J Hematol Oncol Stem Cell Res. 2017;11(2):133–138.
  • Elbedewy T, Gawaly A, Abd El-Naby A. Serum cystatin-C and urinary N-acetyl-glucosaminidase as biomarkers for early renal dysfunction in adult Egyptian patients with thalassemia major. Tanta Med J. 2015;43(1):28–35. doi:10.4103/1110-1415.154563
  • Mahmoud AA, Elian DM, Abd El Hady NM, et al. Assessment of subclinical renal glomerular and tubular dysfunction in children with beta thalassemia major. Children. 2021;8(2):100. doi:10.3390/children8020100
  • Kacar A. Levels of beta-2 microglobulin and cystatin C in beta thalassemia major patients. J Clin Analyt Med. 2015;6:269–273.
  • Uzun E, Balcı YI, Yüksel S, Aral YZ, Aybek H, Akdağ B. Glomerular and tubular functions in children with different forms of beta thalassemia. Ren Fail. 2015;37(9):1414–1418. doi:10.3109/0886022X.2015.1077314
  • Capolongo G, Zacchia M, Beneduci A, et al. Urinary metabolic profile of patients with transfusion-dependent β-thalassemia major undergoing deferasirox therapy. Kidney Blood Press Res. 2020;45(3):455–466. doi:10.1159/000507369