305
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Evaluation of hypoglycemic, antihyperglycemic and antihyperlipidemic activities of 80% methanolic seed extract of Calpurnia aurea (Ait.) Benth. (Fabaceae) in mice

, &
Pages 73-83 | Published online: 25 Jul 2019

References

  • WHO. Global report on diabetes. Geneva, Switzerland; 2016.
  • David S, Paul Z. Diabetes and hyperlipidemia: a direct quantitative analysis—A direct analysis of the effects of insulin resistance on lipid levels in relation to atherosclerotic coronary artery disease. World J Cardiovasc Dis 2012;2(1):20–25. doi:10.4236/wjcd.2012.21004
  • Basak RC, Chatterjee M, Sarma P. An overview on management of diabetic dyslipidemia. J Diabetes Endocrinol. 2013;4(3):27–36.
  • Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63(12):1469–1479. doi:10.1016/j.metabol.2014.08.01025242435
  • Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Herbal medicines for diabetes mellitus: a review. Int J PharmTech Res. 2010;2(3):1883–1892.
  • Patel D, Prasad S, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed. 2012;2(4):320–330. doi:10.1016/S2221-1691(12)60032-X23569923
  • Adedapo AA, Jimoh FO, Koduru S, Afolayan AJ, Masika PJ. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea. BMC Complement Altern Med. 2008;8(1):1. doi:10.1186/1472-6882-8-6218173849
  • Zorloni A, Penzhorn BL, Eloff JN. Extracts of Calpurnia aurea leaves from southern Ethiopia attract and immobilise or kill ticks. Vet Parasitol. 2010;168(1):160–164. doi:10.1016/j.vetpar.2009.10.02620004522
  • Beaumont A, Beckett R, Edwards T, Stiron C. Revision of the genus Calpurnia (Sophoreae: leguminosae). Bothalia. 1999;29(1):5–23. doi:10.4102/abc.v29i1.568
  • Giday M, Teklehaymanot T, Animut A, Mekonnen Y. Medicinal plants of the Shinasha, Agew-awi and Amhara peoples in northwest Ethiopia. J Ethnopharmacol. 2007;110(3):516–525. doi:10.1016/j.jep.2006.10.01117101251
  • Suleman S, Alemu T. A survey on utilization of ethnomedicinal plants in Nekemte Town, East Wellega (Oromia), Ethiopia. J Herbs Spices Med Plants. 2012;18(1):34–57. doi:10.1080/10496475.2011.645188
  • Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5. doi:10.12816/000308222375253
  • Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress - A concise review. Saudi Pharm J. 2016;24(5):547–553.
  • Pérez-Matute P, Zulet MA, Martínez JA. Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol. 2009;9(6):771–779. doi:10.1016/j.coph.2009.08.00519766058
  • Robertson RP. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem. 2004;279(41):42351–42354. doi:10.1074/jbc.R40001920015258147
  • Mulata H, Gnanasekaran N, Melaku U, Daniel S. Phytochemical screening and assessment of in vitro antioxidant activities of Calpurnia aurea seeds and leaves. Ijppr Human. 2015;2(2):1–12.
  • Jung M, Park M, Lee HC, Kang Y-H, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Curr Med Chem. 2006;13(10):1203–1218. doi:10.2174/09298670677636086016719780
  • Subramanian SP, Prasath GS. Antidiabetic and antidyslipidemic nature of trigonelline, a major alkaloid of fenugreek seeds studied in high-fat-fed and low-dose streptozotocin-induced experimental diabetic rats. Biomed Preventive Nutr. 2014;4(4):475–480. doi:10.1016/j.bionut.2014.07.001
  • Verma AK, Singh H, Satyanarayana M, et al. Flavone-based novel antidiabetic and antidyslipidemic agents. J Med Chem. 2012;55(10):4551–4567. doi:10.1021/jm201107g22524508
  • Getiye Y, Tolessa T, Engidawork E. Antihypertensive activity of 80% methanol seed extract of Calpurnia aurea (Ait.) Benth. subsp. aurea (Fabaceae) is mediated through calcium antagonism induced vasodilation. J Ethnopharmacol. 2016;189(189):99–106. doi:10.1016/j.jep.2016.04.05627154409
  • OECD/OCDE. OECD guideline for the testing of chemichals: acute oral toxicity; Up-and-Down Procedure (UDP). OECD, No 4252008.
  • Deeds M, Anderson J, Armstrong A, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim. 2011;45(3):131–140. doi:10.1258/la.2010.01009021478271
  • Furman BL. Streptozotocin-induced diabetic models in mice and rats. Current Protocols Pharmacol. 2015;5(47):1–5.
  • Vital P, Larrieta E, Hiriart M. Sexual dimorphism in insulin sensitivity and susceptibility to develop diabetes in rats. J Endocrinol. 2006;190(2):425–432. doi:10.1677/joe.1.0659616899575
  • Tesfaye A, Makonnen E, Gedamu S. Hypoglycemic and antihyperglycemic activity of aqueous extract of Justicia Schimperiana leaves in normal and streptozotocin-induced diabetic mice. IntJ Pharma Sci Res. 2016;7(02):110–113.
  • Tamiru W, Engidawork E, Asres K. Evaluation of the effects of 80% methanolic leaf extract of Caylusea abyssinica (fresen.) fisch. & Mey. on glucose handling in normal, glucose loaded and diabetic rodents. BMC Complement Altern Med. 2012;12(1):1. doi:10.1186/1472-6882-12-151
  • Yanyan Z, Fu F, Ting C, Zhongwen L, Qingwu WS. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetic mice. J Ethnopharmacol. 2016;192:256–263. doi:10.1016/j.jep.2016.07.00227377336
  • Etuk E. Animal models for studying diabetes mellitus. Agric Biol JN Am. 2010;1(2):130–134.
  • Baquer NZ, Kumar P, Taha A, Kale R, Cowsik S, McLean P. Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J Biosci. 2011;36(2):383–396.21654091
  • Bowe JE, Franklin ZJ, Hauge-Evans AC, King AJ, Persaud SJ, Jones PM. Metabolic phenotyping guidelines: assessing glucose homeostasis in rodent models. J Endocrinol. 2014;222(3):G13–G25. doi:10.1530/JOE-14-018225056117
  • Ayala JE, Samuel VT, Morton GJ, et al. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis Model Mech. 2010;3(9–10):525–534. doi:10.1242/dmm.00623920713647
  • Chika A, Bello SO. Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J Ethnopharmacol. 2010;129(1):34–37. doi:10.1016/j.jep.2010.02.00820219661
  • Rajurkar B. Phyto-pharmacological investigations of Clerodendrum infortunatum Gartn. Int Res J Pharm. 2011;2(11):130–132.
  • Toma A, Makonnen E, Mekonnen Y, Debella A, Adisakwattana S. Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2015;15(1):1. doi:10.1186/s12906-015-0779-025617057
  • Clark J, Baldwin R, Bayne K, et al. Guide for the Care and Use of Laboratory Animals. Washington, DC: Institute of Laboratory Animal Resources, National Research Council; 1996:125.
  • IDF. Diabetes Atlas. 7th ed. Brussels, Belgium: International Diabetes Federation; 2015.
  • Arora S, Ojha SK, Vohora D. Characterisation of streptozotocin induced diabetes mellitus in swiss albino mice. Global J Pharmacol. 2009;3(2):81–84.
  • He-Lin T, Li-Shun W, Zhong-Xin X, Ru-Tong Z, Dong-Ling J, Jin-Sheng G. Correlation between blood glucose level and diabetes signs in streptozotocin induced diabetic mice. Global J Pharmacol. 2010;4(3):111–116.
  • Eleazu CO, Eleazu KC, Chukwuma S, Essien UN. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J Diabetes Metab Disord. 2013;12(1):60. doi:10.1186/2251-6581-12-6024364898
  • Wu J, Yan L-J. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes Metab Syndrome Obesity. 2015;8:181.
  • Sharma S, Choudhary M, Bhardwaj S, Choudhary N, Rana AC. Hypoglycemic potential of alcoholic root extract of Cassia occidentalis Linn. in streptozotocin induced diabetes in albino mice. Bulletin Faculty Pharm Cairo Univ. 2014;52(2):211–217. doi:10.1016/j.bfopcu.2014.09.003
  • Howarth F, Jacobson M, Shafiullah M, Adeghate E. Long-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats. Exp Physiol. 2005;90(6):827–835. doi:10.1113/expphysiol.2004.02831616091403
  • Chikhi I, Allali H, Dib MEA, Medjdoub H, Tabti B. Antidiabetic activity of aqueous leaf extract of Atriplex halimus L. (Chenopodiaceae) in streptozotocin–induced diabetic rats. Asian Pac J Trop Dis. 2014;4(3):181–184. doi:10.1016/S2222-1808(14)60501-6
  • Kumar S, Kumar V, Prakash O. Antidiabetic and hypolipidemic activities of Kigelia pinnata flowers extract in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed. 2012;2(7):543–546. doi:10.1016/S2221-1691(12)60093-823569967
  • Goldberg IJ. Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86(3):965–971. doi:10.1210/jcem.86.3.730411238470