484
Views
11
CrossRef citations to date
0
Altmetric
Review

Experimental GABA A Receptor Agonists and Allosteric Modulators for the Treatment of Focal Epilepsy

ORCID Icon, &
Pages 235-244 | Published online: 08 Mar 2021

References

  • Chuang S-H, Reddy DS. Genetic and molecular regulation of extrasynaptic GABA-A receptors in the brain: therapeutic insights for epilepsy. J Pharmacol Exp Ther. 2018;364(2):180–197. doi:10.1124/jpet.117.244673
  • Vargas RA. The GABAergic system: an overview of physiology, physiopathology and therapeutics. Int J Clin Pharmacol Pharmacother. 2018;4:143.
  • Hernandez CC, Macdonald RL. A structural look at GABAA receptor mutations linked to epilepsy syndromes. Brain Res. 2019;1714:234–247. doi:10.1016/j.brainres.2019.03.004
  • Abou-Khalil BW. Update on antiepileptic drugs 2019. Continuum. 2019;25(2):508–536. doi:10.1212/CON.0000000000000715
  • Laxer KD, Trinka E, Hirsch LJ, et al. The consequences of refractory epilepsy and its treatment. Epilepsy Behav. 2014;37:59–70. doi:10.1016/j.yebeh.2014.05.031
  • Oller LFV. The prevalence of different types of epilepsy in clinical practice. Rev Neurol. 2002;34(6):526–531.
  • Sigel E, Steinmann ME. Structure, function, and modulation of GABA(A) receptors. J Biol Chem. 2012;287(48):40224–40231. doi:10.1074/jbc.R112.386664
  • Olsen RW, Sieghart W. International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Pharmacol Rev. 2008;60(3):243–260. doi:10.1124/pr.108.00505
  • Sieghart W. Structure, pharmacology, and function of GABAA receptor subtypes. Adv Pharmacol. 2006;54:231–263.
  • Zhu S, Noviello CM, Teng J, et al. Structure of a human synaptic GABAA receptor. Nature. 2018;559(7712):67–72. doi:10.1038/s41586-018-0255-3
  • Chua HC, Chebib M. GABAA receptors and the diversity in their structure and pharmacology. Adv Pharmacol. 2017;79:1–34.
  • Olsen RW. GABAA receptor: positive and negative allosteric modulators. Neuropharmacology. 2018;136(Pt A):10–22.
  • Sieghart W. Chapter three - allosteric modulation of GABAA receptors via multiple drug-binding sites. In: Rudolph U, editor. Advances in Pharmacology [Internet]. Academic Press; 2015: 53–96. (Diversity and functions of GABA receptors: a tribute to Hanns Möhler, part A; vol. 72). Available from: http://www.sciencedirect.com/science/article/pii/S1054358914000374. Accessed February 24, 2021.
  • Lorenz-Guertin JM, Jacob TC. GABA type a receptor trafficking and the architecture of synaptic inhibition. Dev Neurobiol. 2018;78(3):238–270.
  • Olsen RW. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. Adv Pharmacol. 2015;73:167–202.
  • Changeux J-P, Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Diabetes Obes Metab. 2017;19(Suppl 1):4–21. doi:10.1111/dom.12959
  • Krogsgaard-Larsen P, Frølund B, Liljefors T. Specific GABA(A) agonists and partial agonists. Chem Rec. 2002;2(6):419–430. doi:10.1002/tcr.10040
  • Falch E, Jacobsen P, Krogsgaard-Larsen P, Curtis DR. GABA-mimetic activity and effects on diazepam binding of aminosulphonic acids structurally related to piperidine-4-sulphonic acid. J Neurochem. 1985;44(1):68–75. doi:10.1111/j.1471-4159.1985.tb07114.x
  • Hansen SL, Ebert B, Fjalland B, Kristiansen U. Effects of GABA(A) receptor partial agonists in primary cultures of cerebellar granule neurons and cerebral cortical neurons reflect different receptor subunit compositions. Br J Pharmacol. 2001;133(4):539–549. doi:10.1038/sj.bjp.0704121
  • Johnston GAR. Advantages of an antagonist: bicuculline and other GABA antagonists. Br J Pharmacol. 2013;169(2):328–336. doi:10.1111/bph.12127
  • Masiulis S, Desai R, Uchański T, et al. GABAA receptor signalling mechanisms revealed by structural pharmacology. Nature. 2019;565(7740):454–459. doi:10.1038/s41586-018-0832-5
  • Kirkness EF, Turner AJ. The gamma-aminobutyrate/benzodiazepine receptor from pig brain. Enhancement of gamma-aminobutyrate-receptor binding by the anaesthetic propanidid. Biochem J. 1986;233(1):259–264. doi:10.1042/bj2330259
  • Dawson GR, Wafford KA, Smith A, et al. Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the gamma-aminobutyric acid(A) receptor. J Pharmacol Exp Ther. 2000;295(3):1051–1060.
  • Kent DE, Savechenkov PY, Bruzik KS, Miller KW. Binding site location on GABAA receptors determines whether mixtures of intravenous general anaesthetics interact synergistically or additively in vivo. Br J Pharmacol. 2019;176(24):4760–4772. doi:10.1111/bph.14843
  • Baur R, Gertsch J, Sigel E. The cannabinoid CB1 receptor antagonists rimonabant (SR141716) and AM251 directly potentiate GABA(A) receptors. Br J Pharmacol. 2012;165(8):2479–2484. doi:10.1111/j.1476-5381.2011.01405.x
  • Sigel E, Baur R, Rácz I, et al. The major central endocannabinoid directly acts at GABA(A) receptors. Proc Natl Acad Sci U S A. 2011;108(44):18150–18155. doi:10.1073/pnas.1113444108
  • Scheffer IE, Berkovic S, Capovilla G, et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia. 2017;58(4):512–521. doi:10.1111/epi.13709
  • Avoli M, D’Antuono M, Louvel J, et al. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol. 2002;68(3):167–207. doi:10.1016/S0301-0082(02)00077-1
  • Curia G, Lucchi C, Vinet J, et al. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem. 2014;21(6):663–688. doi:10.2174/0929867320666131119152201
  • Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia. 2001;42(Suppl 3):8–12. doi:10.1046/j.1528-1157.2001.042suppl.3008.x
  • Fritschy JM, Kiener T, Bouilleret V, Loup F. GABAergic neurons and GABA(A)-receptors in temporal lobe epilepsy. Neurochem Int. 1999;34(5):435–445. doi:10.1016/S0197-0186(99)00040-6
  • Stamboulian-Platel S, Legendre A, Chabrol T, et al. Activation of GABAA receptors controls mesiotemporal lobe epilepsy despite changes in chloride transporters expression: in vivo and in silico approach. Exp Neurol. 2016;284(Pt A):11–28. doi:10.1016/j.expneurol.2016.07.009
  • Mehta P, Srivastava S, Sharma M, et al. Identification of chemically diverse GABAA agonists as potential anti-epileptic agents using structure-guided virtual screening, ADMET, quantum mechanics and clinical validation through off-target analysis. Int J Biol Macromol. 2018;119:1113–1128. doi:10.1016/j.ijbiomac.2018.08.032
  • Ochoa-de la Paz L, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? Expert Rev Neurother. 2019;19(4):289–291. doi:10.1080/14737175.2019.1593827
  • Li Q, Guo J-C, Jin H-B, et al. Involvement of taurine in penicillin-induced epilepsy and anti-convulsion of acupuncture: a preliminary report. Acupunct Electrother Res. 2005;30(1–2):1–14. doi:10.3727/036012905815901325
  • Taranukhin AG, Saransaari P, Kiianmaa K, et al. Comparison of toxicity of taurine and GABA in combination with alcohol in 7-day-old mice. Adv Exp Med Biol. 2017;975(Pt 2):1021–1033.
  • Curran CP, Marczinski CA. Taurine, caffeine, and energy drinks: reviewing the risks to the adolescent brain. Birth Defects Res. 2017;109(20):1640–1648. doi:10.1002/bdr2.1177
  • Witkin JM, Smith JL, Ping X, et al. Bioisosteres of ethyl 8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo [1,5-a][1,4]diazepine-3-carboxylate (HZ-166) as novel alpha 2,3 selective potentiators of GABAA receptors: improved bioavailability enhances anticonvulsant efficacy. Neuropharmacology. 2018;137:332–343. doi:10.1016/j.neuropharm.2018.05.006
  • Nomura T, Hawkins NA, Kearney JA, et al. Potentiating α2 subunit containing perisomatic GABAA receptors protects against seizures in a mouse model of Dravet syndrome. J Physiol. 2019;597(16):4293–4307. doi:10.1113/JP277651
  • Duveau V, Buhl DL, Evrard A, et al. Pronounced antiepileptic activity of the subtype-selective GABAA -positive allosteric modulator PF-06372865 in the GAERS absence epilepsy model. CNS Neurosci Ther. 2019;25(2):255–260. doi:10.1111/cns.13046
  • Rundfeldt C, Löscher W. The pharmacology of imepitoin: the first partial benzodiazepine receptor agonist developed for the treatment of epilepsy. CNS Drugs. 2014;28(1):29–43. doi:10.1007/s40263-013-0129-z
  • Löscher W, Potschka H, Rieck S, et al. Anticonvulsant efficacy of the low-affinity partial benzodiazepine receptor agonist ELB 138 in a dog seizure model and in epileptic dogs with spontaneously recurrent seizures. Epilepsia. 2004;45(10):1228–1239. doi:10.1111/j.0013-9580.2004.21204.x
  • Reddy DS, Jian K. The testosterone-derived neurosteroid androstanediol is a positive allosteric modulator of GABAA receptors. J Pharmacol Exp Ther. 2010;334(3):1031–1041. doi:10.1124/jpet.110.169854
  • Miziak B, Chrościńska-Krawczyk M, Czuczwar SJ. Neurosteroids and seizure activity. Front Endocrinol. 2020;11:541802. doi:10.3389/fendo.2020.541802
  • Lucchi C, Costa AM, Rustichelli C, Biagini G. Allopregnanolone and pregnanolone are reduced in the hippocampus of epileptic rats, but only allopregnanolone correlates with the seizure frequency. Neuroendocrinology. 2020. doi:10.1159/000509093
  • Lévesque M, Biagini G, Avoli M. Neurosteroids and focal epileptic disorders. Int J Mol Sci. 2020;21(24):9391. doi:10.3390/ijms21249391
  • Pugnaghi M, Monti G, Biagini G, Meletti S. Temporal lobe epilepsy exacerbation during pharmacological inhibition of endogenous neurosteroid synthesis. BMJ Case Rep. 2013;2013(feb19 1):bcr2012008204. doi:10.1136/bcr-2012-008204
  • Trivisano M, Lucchi C, Rustichelli C, et al. Reduced steroidogenesis in patients with PCDH19-female limited epilepsy. Epilepsia. 2017;58(6):e91–5. doi:10.1111/epi.13772
  • Meletti S, Lucchi C, Monti G, et al. Decreased allopregnanolone levels in cerebrospinal fluid obtained during status epilepticus. Epilepsia. 2017;58(2):e16–20. doi:10.1111/epi.13625
  • Pernea M, Sutcliffe AG. Clobazam and its use in epilepsy. Pediatr Rep. 2016;8(2):6516. doi:10.4081/pr.2016.6516
  • Arya R, Giridharan N, Anand V, Garg SK. Clobazam monotherapy for focal or generalized seizures. Cochrane Database Syst Rev. 2018;11(7):CD009258.
  • Gimigliano F. Is clobazam monotherapy effective and safe in people with focal or generalized seizures? A cochrane review summary with commentary. Dev Med Child Neurol. 2020;62(6):670–672. doi:10.1111/dmcn.14539
  • Gauthier AC, Mattson RH. Clobazam: a safe, efficacious, and newly rediscovered therapeutic for epilepsy. CNS Neurosci Ther. 2015;21(7):543–548. doi:10.1111/cns.12399
  • Andrade R, García-Espinosa A, Machado-Rojas A, et al. A prospective, open, controlled and randomised study of clobazam versus carbamazepine in patients with frequent episodes of rolandic epilepsy. Rev Neurol. 2009;49(11):581–586.
  • Vidaurre J, Herbst J. New antiepileptic drugs. Medicina (Mex). 2019;79(Suppl 3):48–53.
  • Jankovic S, Lukic S. Antiepileptic potential of ganaxolone. Vojnosanit Pregl. 2016;74:157.
  • Bialer M, Johannessen SI, Koepp MJ, et al. Progress report on new antiepileptic drugs: a summary of the fifteenth eilat conference on new antiepileptic drugs and devices (EILAT XV). II. Drugs in more advanced clinical development. Epilepsia. 2020;61(11):2365–2385. doi:10.1111/epi.16726
  • Ligsay A, Van Dijck A, Nguyen DV, et al. A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J Neurodev Disord. 2017;9(1):26. doi:10.1186/s11689-017-9207-8
  • Sperling MR, Klein P, Tsai J. Randomized, double-blind, placebo-controlled Phase 2 study of ganaxolone as add-on therapy in adults with uncontrolled partial-onset seizures. Epilepsia. 2017;58(4):558–564. doi:10.1111/epi.13705
  • Boada CM, French JA, Dumanis SB. Proceedings of the 15th antiepileptic drug and device trials meeting: state of the science. Epilepsy Behav. 2020;111:107189. doi:10.1016/j.yebeh.2020.107189
  • Simen A, Whitlock M, Qiu R, et al. An 8-week, randomized, phase 2, double-blind, sequential parallel-group comparison study of two dose levels of the GABAA positive allosteric modulator PF-06372865 compared with placebo as an adjunctive treatment in outpatients with inadequate response to standard of care for generalized anxiety disorder. J Clin Psychopharmacol. 2019;39(1):20–27. doi:10.1097/JCP.0000000000000997
  • Gurrell R, Gorman D, Whitlock M, et al. Photosensitive epilepsy: robust clinical efficacy of a selective GABA potentiator. Neurology. 2019;92(15):e1786–95. doi:10.1212/WNL.0000000000007271
  • van Amerongen G, Siebenga PS, Gurrell R, et al. Analgesic potential of PF-06372865, an α2/α3/α5 subtype-selective GABAA partial agonist, in humans. Br J Anaesth. 2019;123(2):e194–203. doi:10.1016/j.bja.2018.12.006
  • Wood M, Daniels V, Provins L, et al. Pharmacological profile of the novel antiepileptic drug candidate padsevonil: interactions with synaptic vesicle 2 proteins and the GABAA receptor. J Pharmacol Exp Ther. 2020;372(1):1–10. doi:10.1124/jpet.119.261149
  • Muglia P, Hannestad J, Brandt C, et al. Padsevonil randomized phase IIa trial in treatment-resistant focal epilepsy: a translational approach. Brain Commun. 2020;2(2):fcaa183. doi:10.1093/braincomms/fcaa183
  • Mula M. Emerging drugs for focal epilepsy. Expert Opin Emerg Drugs. 2018;23(3):243–249. doi:10.1080/14728214.2018.1527903
  • Clobazam wockhardt 1mg/ml oral suspension - summary of product characteristics (SmPC) - (emc) [Internet]. [cited December 9, 2020]. Available from: https://www.medicines.org.uk/emc/product/11632/smpc. Accessed February 24, 2021.
  • Clobazam oral suspension - FDA prescribing information, side effects and uses [Internet]. Drugs.com. [cited December 9, 2020]. Available from: https://www.drugs.com/pro/clobazam-oral-suspension.html. Accessed February 24, 2021.
  • Marinus launches expanded access program for ganaxolone treatment in CDKL5 deficiency disorder [Internet]. [cited December 9, 2020]. Available from: https://ir.marinuspharma.com/news/news-details/2020/Marinus-Launches-Expanded-Access-Program-for-Ganaxolone-Treatment-in-CDKL5-Deficiency-Disorder/default.aspx. Accessed February 24, 2021.
  • Sullivan J, Specchio N, Chez MG, et al. Preliminary evidence of a predictive clinical biomarker in pcdh19-related epilepsy: significant treatment effect of ganaxolone in biomarker-positive patients. Annual meeting abstracts [Internet]. American Epilepsy Society; 2018 [cited February 11, 2021]. Available from: https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/502507. Accessed February 24, 2021.
  • Cerevel Therapeutics, LLC. A randomized, double-blind, placebo-controlled, parallel group, multicenter trial of CVL-865 as adjunctive therapy in adults with drug-resistant focal onset seizures (REALIZE trial) [Internet]. clinicaltrials.gov; 2020 [cited December 8, 2020]. Report No.: NCT04244175. Available from: https://clinicaltrials.gov/ct2/show/NCT04244175. Accessed February 24, 2021.
  • UCB Biopharma SRL. A multicenter, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of padsevonil as adjunctive treatment of focal-onset seizures in adult subjects with drug-resistant epilepsy [Internet]. clinicaltrials.gov; 2020 [cited December 8, 2020]. Report No.: record/NCT03739840. Available from: https://clinicaltrials.gov/ct2/show/record/NCT03739840. Accessed February 24, 2021.
  • Key events – UCB integrated annual report 2019 [Internet]. Integrated annual report; 2019 [cited December 9, 2020]. Available from: https://reports.ucb.com/2019/integrated-annual-report/financials/business-performance-review/key-events.html. Accessed February 24, 2021.