488
Views
9
CrossRef citations to date
0
Altmetric
Review

Experimental Pharmacological Management of Psoriasis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 725-737 | Published online: 26 Jul 2021

References

  • Lanna C, Mancini M, Gaziano R, et al. Skin Immunity and Its Dysregulation in Psoriasis. Cell Cycle. 2019;18:2581–2589. doi:10.1080/15384101.2019.1653099.
  • Picciani BLS, Domingos TA, Teixeira-Souza T, Santos VDCBD. Geographic Tongue and Psoriasis: clinical, Histopathological, Immunohistochemical and Genetic Correlation - a Literature Review. An Bras Dermatol. 2016;91:410–421. doi:10.1590/abd1806-4841.20164288.
  • Rønholt K, Iversen L. Old and New Biological Therapies for Psoriasis. Int J Mol Sci. 2017;18(11):2297. doi:10.3390/ijms18112297.
  • Sun C, Xia J. Treatment of Psoriasis: janus Kinases Inhibitors and Biologics for the Interleukin-23/Th17 Axis. Minerva Med. 2020;111:254–265. doi:10.23736/S0026-4806.20.06460-5.
  • Balato A, Campione E, Cirillo T, Malara G, Trifirò C, Bianchi L. Long-Term Efficacy and Safety of Apremilast in Psoriatic Arthritis: focus on Skin Manifestations and Special Populations. Dermatol Ther. 2020;33:e13440. doi:10.1111/dth.13440.
  • Lanna C, Cesaroni GM, Mazzilli S, et al. Apremilast as a Target Therapy for Nail Psoriasis: a Real-Life Observational Study Proving Its Efficacy in Restoring the Nail Unit. J Dermatolog Treat. 2020;1–5. doi:10.1080/09546634.2020.1801976.
  • Lanna C, Cesaroni GM, Mazzilli S, Bianchi L, Campione E Small Molecules, Big Promises: improvement of Psoriasis Severity and Glucidic Markers with Apremilast: a Case Report. Available from: https://www.dovepress.com/small-molecules-big-promises-improvement-of-psoriasis-severity-and-glu-peer-reviewed-article-DMSO. Accessed December 31, 2020.
  • Mazzilli S, Lanna C, Chiaramonte C, et al. Real Life Experience of Apremilast in Psoriasis and Arthritis Psoriatic Patients: preliminary Results on Metabolic Biomarkers. J Dermatol. 2020. doi:10.1111/1346-8138.15293.
  • Lanna C, Cesaroni GM, Mazzilli S, et al. Nails as Immune-Privileged Sites: a Case of Disabling Acrodermatitis Continua of Hallopeau Successfully Treated with Apremilast. Dermatol Ther. 2019;32:e12946. doi:10.1111/dth.12946.
  • Nogueira M, Puig L, Torres T. JAK Inhibitors for Treatment of Psoriasis: focus on Selective TYK2 Inhibitors. Drugs. 2020;80:341–352. doi:10.1007/s40265-020-01261-8.
  • Kan S-H, Mancini G, Gallagher G. Identification and Characterization of Multiple Splice Forms of the Human Interleukin-23 Receptor Alpha Chain in Mitogen-Activated Leukocytes. Genes Immun. 2008;9:631–639. doi:10.1038/gene.2008.64.
  • Roskoski R. Janus Kinase (JAK) Inhibitors in the Treatment of Inflammatory and Neoplastic Diseases. Pharmacol Res. 2016;111:784–803. doi:10.1016/j.phrs.2016.07.038.
  • Schwartz DM, Kanno Y, Villarino A, Ward M, Gadina M, O’Shea JJJAK. Inhibition as a Therapeutic Strategy for Immune and Inflammatory Diseases. Nat Rev Drug Discov. 2017;16:843–862. doi:10.1038/nrd.2017.201.
  • O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, The LA. JAK-STAT Pathway: impact on Human Disease and Therapeutic Intervention. Annu Rev Med. 2015;66:311–328. doi:10.1146/annurev-med-051113-024537.
  • Chen Z, Laurence A, Kanno Y, et al. Selective Regulatory Function of Socs3 in the Formation of IL-17-Secreting T Cells. Proc Natl Acad Sci U S A. 2006;103:8137–8142. doi:10.1073/pnas.0600666103.
  • Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 Regulates Cytokine-Mediated Generation of Inflammatory Helper T Cells. J Biol Chem. 2007;282:9358–9363. doi:10.1074/jbc.C600321200.
  • Papp K, Gordon K, Thaçi D, et al. Phase 2 Trial of Selective Tyrosine Kinase 2 Inhibition in Psoriasis. N Engl J Med. 2018;379:1313–1321. doi:10.1056/NEJMoa1806382.
  • Chang Y, Xu S, Ding K. Tyrosine Kinase 2 (TYK2) Allosteric Inhibitors To Treat Autoimmune Diseases. J Med Chem. 2019;62:8951–8952. doi:10.1021/acs.jmedchem.9b01612.
  • Tanimoto A, Ogawa Y, Oki C, et al. Pharmacological Properties of JTE-052: a Novel Potent JAK Inhibitor That Suppresses Various Inflammatory Responses in Vitro and in Vivo. Inflamm Res. 2015;64:41–51. doi:10.1007/s00011-014-0782-9.
  • Tanimoto A, Shinozaki Y, Yamamoto Y, et al. A Novel JAK Inhibitor JTE-052 Reduces Skin Inflammation and Ameliorates Chronic Dermatitis in Rodent Models: comparison with Conventional Therapeutic Agents. Exp Dermatol. 2018;27:22–29. doi:10.1111/exd.13370.
  • Amano W, Nakajima S, Kunugi H, et al. The Janus Kinase Inhibitor JTE-052 Improves Skin Barrier Function through Suppressing Signal Transducer and Activator of Transcription 3 Signaling. J Allergy Clin Immunol. 2015;136:667–677.e7. doi:10.1016/j.jaci.2015.03.051.
  • Denison MS, Nagy SR. Activation of the Aryl Hydrocarbon Receptor by Structurally Diverse Exogenous and Endogenous Chemicals. Annu Rev Pharmacol Toxicol. 2003;43:309–334. doi:10.1146/annurev.pharmtox.43.100901.135828.
  • Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The Aryl Hydrocarbon Receptor: multitasking in the Immune System. Annu Rev Immunol. 2014;32:403–432. doi:10.1146/annurev-immunol-032713-120245.
  • Furue M, Hashimoto-Hachiya A, Tsuji G. Aryl Hydrocarbon Receptor in Atopic Dermatitis and Psoriasis. Int J Mol Sci. 2019;20(21):5424. doi:10.3390/ijms20215424.
  • Zhu Z, Chen J, Lin Y, et al. Aryl Hydrocarbon Receptor in Cutaneous Vascular Endothelial Cells Restricts Psoriasis Development by Negatively Regulating Neutrophil Recruitment. J Invest Dermatol. 2020;140:1233–1243.e9. doi:10.1016/j.jid.2019.11.022.
  • Ramirez J-M, Brembilla NC, Sorg O, et al. Activation of the Aryl Hydrocarbon Receptor Reveals Distinct Requirements for IL-22 and IL-17 Production by Human T Helper Cells. Eur J Immunol. 2010;40:2450–2459. doi:10.1002/eji.201040461.
  • Smith SH, Jayawickreme C, Rickard DJ, et al. Tapinarof Is a Natural AhR Agonist That Resolves Skin Inflammation in Mice and Humans. J Invest Dermatol. 2017;137:2110–2119. doi:10.1016/j.jid.2017.05.004.
  • Richardson WH, Schmidt TM, Nealson KH. Identification of an Anthraquinone Pigment and a Hydroxystilbene Antibiotic from Xenorhabdus Luminescens. Appl Environ Microbiol. 1988;54:1602–1605. doi:10.1128/aem.54.6.1602-1605.1988
  • Tang L, Yang X, Liang Y, Xie H, Dai Z, Zheng G. Transcription Factor Retinoid-Related Orphan Receptor Γt: a Promising Target for the Treatment of Psoriasis. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.01210
  • He Y-W, Deftos ML, Ojala EW, Bevan MJ. RORγt, a Novel Isoform of an Orphan Receptor, Negatively Regulates Fas Ligand Expression and IL-2 Production in T Cells. Immunity. 1998;9:797–806. doi:10.1016/S1074-7613(00)80645-7
  • Medvedev A, Chistokhina A, Hirose T, Jetten AM. Genomic Structure and Chromosomal Mapping of the Nuclear Orphan Receptor ROR Gamma (RORC) Gene. Genomics. 1997;46:93–102. doi:10.1006/geno.1997.4980.
  • Villey I, de Chasseval R, de Villartay JP. RORgammaT, a Thymus-Specific Isoform of the Orphan Nuclear Receptor RORgamma/TOR, Is up-Regulated by Signaling through the Pre-T Cell Receptor and Binds to the TEA Promoter. Eur J Immunol. 1999;29:4072–4080. doi:10.1002/(SICI)1521-4141(199912)29:12<4072::aid-immu4072>3.0.CO;2-E.
  • Eberl G, Littman DR. The Role of the Nuclear Hormone Receptor RORgammat in the Development of Lymph Nodes and Peyer’s Patches. Immunol Rev. 2003;195:81–90. doi:10.1034/j.1600-065x.2003.00074.x.
  • Ivanov II, McKenzie BS, Zhou L, et al. The Orphan Nuclear Receptor RORgammat Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. Cell. 2006;126:1121–1133. doi:10.1016/j.cell.2006.07.035.
  • Borodzicz S, Rudnicka L, Mirowska-Guzel D, Cudnoch-Jedrzejewska A. The Role of Epidermal Sphingolipids in Dermatologic Diseases. Lipids Health Dis. 2016;15:13. doi:10.1186/s12944-016-0178-7.
  • Kunkel GT, Maceyka M, Milstien S, Spiegel S. Targeting the Sphingosine-1-Phosphate Axis in Cancer, Inflammation and Beyond. Nat Rev Drug Discov. 2013;12:688–702. doi:10.1038/nrd4099.
  • Krause A, D’Ambrosio D, Dingemanse J. Modeling Clinical Efficacy of the S1P Receptor Modulator Ponesimod in Psoriasis. J Dermatol Sci. 2018;89:136–145. doi:10.1016/j.jdermsci.2017.11.003.
  • Cyster JG, Schwab SR. Sphingosine-1-Phosphate and Lymphocyte Egress from Lymphoid Organs. Annu Rev Immunol. 2012;30:69–94. doi:10.1146/annurev-immunol-020711-075011.
  • Chew WS, Wang W, Herr DR. To Fingolimod and beyond: the Rich Pipeline of Drug Candidates That Target S1P Signaling. Pharmacol Res. 2016;113:521–532. doi:10.1016/j.phrs.2016.09.025.
  • Piali L, Froidevaux S, Hess P, et al. The Selective Sphingosine 1-Phosphate Receptor 1 Agonist Ponesimod Protects against Lymphocyte-Mediated Tissue Inflammation. J Pharmacol Exp Ther. 2011;337:547–556. doi:10.1124/jpet.110.176487.
  • Ji M, Xue N, Lai F, et al. Validating a Selective S1P1 Receptor Modulator Syl930 for Psoriasis Treatment. Biol Pharm Bull. 2018;41:592–596. doi:10.1248/bpb.b17-00939.
  • Vogler R, Sauer B, Kim D-S, Schäfer-Korting M, Kleuser B. Sphingosine-1-Phosphate and Its Potentially Paradoxical Effects on Critical Parameters of Cutaneous Wound Healing. J Invest Dermatol. 2003;120:693–700. doi:10.1046/j.1523-1747.2003.12096.x.
  • Schüppel M, Kürschner U, Kleuser U, Schäfer-Korting M. Sphingosine 1-Phosphate Restrains Insulin-Mediated Keratinocyte Proliferation via Inhibition of Akt through the S1P2 Receptor Subtype. J Invest Dermatol. 2008;128:1747–1756. doi:10.1038/sj.jid.5701259.
  • Schaper K, Dickhaut J, Japtok L, et al. Sphingosine-1-Phosphate Exhibits Anti-Proliferative and Anti-Inflammatory Effects in Mouse Models of Psoriasis. J Dermatol Sci. 2013;71:29–36. doi:10.1016/j.jdermsci.2013.03.006.
  • Manggau M, Kim DS, Ruwisch L, et al. 1Alpha,25-Dihydroxyvitamin D3 Protects Human Keratinocytes from Apoptosis by the Formation of Sphingosine-1-Phosphate. J Invest Dermatol. 2001;117:1241–1249. doi:10.1046/j.0022-202x.2001.01496.x.
  • Park S-J, Im D-S. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery. Biomol Ther (Seoul). 2017;25:80–90. doi:10.4062/biomolther.2016.160.
  • Bolli MH, Abele S, Binkert C, et al. 2-Imino-Thiazolidin-4-One Derivatives as Potent, Orally Active S1P1 Receptor Agonists. J Med Chem. 2010;53:4198–4211. doi:10.1021/jm100181s.
  • Riento K, Ridley AJ. Rocks: multifunctional Kinases in Cell Behaviour. Nat Rev Mol Cell Biol. 2003;4:446–456. doi:10.1038/nrm1128.
  • Zanin-Zhorov A, Weiss JM, Nyuydzefe MS, et al. Selective Oral ROCK2 Inhibitor Down-Regulates IL-21 and IL-17 Secretion in Human T Cells via STAT3-Dependent Mechanism. Proc Natl Acad Sci U S A. 2014;111:16814–16819. doi:10.1073/pnas.1414189111.
  • Chen W, Nyuydzefe MS, Weiss JM, Zhang J, Waksal SD, Zanin-Zhorov A. ROCK2, but Not ROCK1 Interacts with Phosphorylated STAT3 and Co-Occupies TH17/TFH Gene Promoters in TH17-Activated Human T Cells. Sci Rep. 2018;8:16636. doi:10.1038/s41598-018-35109-9.
  • Zanin-Zhorov A, Weiss JM, Trzeciak A, et al. Cutting Edge: selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J Immunol. 2017;198:3809–3814. doi:10.4049/jimmunol.1602142.
  • Li S, Strelow A, Fontana EJ, Wesche H. IRAK-4: a Novel Member of the IRAK Family with the Properties of an IRAK-Kinase. Proc Natl Acad Sci U S A. 2002;99:5567–5572. doi:10.1073/pnas.082100399.
  • Kim TW, Staschke K, Bulek K, et al. A Critical Role for IRAK4 Kinase Activity in Toll-like Receptor–Mediated Innate Immunity. J Exp Med. 2007;204:1025–1036. doi:10.1084/jem.20061825.
  • Croasdell G. A Report from the American College of Rheumatology/Association of Rheumatology Health Professionals (ACR/ARHP) - 2012 Annual Meeting (November 9–14, 2012 - Washington, D.C., USA). Drugs Today (Barc). 2013;49:153–155. doi:10.1358/dot.2013.49.2.1937427.
  • Koziczak-Holbro M, Littlewood-Evans A, Pöllinger B, et al. The Critical Role of Kinase Activity of Interleukin-1 Receptor-Associated Kinase 4 in Animal Models of Joint Inflammation. Arthritis Rheum. 2009;60:1661–1671. doi:10.1002/art.24552.
  • Staschke KA, Dong S, Saha J, et al. IRAK4 Kinase Activity Is Required for Th17 Differentiation and Th17-Mediated Disease. J Immunol. 2009;183:568–577. doi:10.4049/jimmunol.0802361.
  • Sanz MJ, Cortijo J, Morcillo EJ. PDE4 Inhibitors as New Anti-Inflammatory Drugs: effects on Cell Trafficking and Cell Adhesion Molecules Expression. Pharmacol Ther. 2005;106:269–297. doi:10.1016/j.pharmthera.2004.12.001.
  • Li H, Zuo J, Tang W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front Pharmacol. 2018;9:1048. doi:10.3389/fphar.2018.01048.
  • Chiricozzi A, Caposiena D, Garofalo V, et al. Therapeutic for the Treatment of Moderate-to-Severe Plaque Psoriasis: apremilast. Expert Rev Clin Immunol. 2016;12:237–249. doi:10.1586/1744666X.2016.1134319.
  • Schafer PH, Adams M, Horan G, Truzzi F, Marconi A, Pincelli C. Apremilast Normalizes Gene Expression of Inflammatory Mediators in Human Keratinocytes and Reduces Antigen-Induced Atopic Dermatitis in Mice. Drugs R D. 2019;19:329–338. doi:10.1007/s40268-019-00284-1.
  • Liu X, Chen R, Zeng G, et al. Determination of a PDE4 Inhibitor Hemay005 in Human Plasma and Urine by UPLC-MS/ MS and Its Application to a PK Study. Bioanalysis. 2018;10:863–875. doi:10.4155/bio-2018-0004.
  • Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA. Pharmacological and Therapeutic Effects of A3 Adenosine Receptor Agonists. Drug Discov Today. 2012;17:359–366. doi:10.1016/j.drudis.2011.10.007.
  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. J Cell Biol. 1988;106:761–771. doi:10.1083/jcb.106.3.761.
  • Cohen S, Barer F, Itzhak I, Silverman MH, Fishman P. Inhibition of IL-17 and IL-23 in Human Keratinocytes by the A3 Adenosine Receptor Agonist Piclidenoson. J Immunol Res. 2018;2018:2310970. doi:10.1155/2018/2310970.
  • David M, Gospodinov DK, Gheorghe N, et al. Treatment of Plaque-Type Psoriasis With Oral CF101: data from a Phase II/III Multicenter, Randomized, Controlled Trial. J Drugs Dermatol. 2016;15:931–938.
  • Balak DMW, van Doorn MBA, Arbeit RD, et al. IMO-8400, a Toll-like Receptor 7, 8, and 9 Antagonist, Demonstrates Clinical Activity in a Phase 2a, Randomized, Placebo-Controlled Trial in Patients with Moderate-to-Severe Plaque Psoriasis. Clin Immunol. 2017;174:63–72. doi:10.1016/j.clim.2016.09.015.
  • Yuan Z-C, Xu W-D, Liu X-Y, Liu X-Y, Huang A-F, Su L-C. Biology of IL-36 Signaling and Its Role in Systemic Inflammatory Diseases. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.02532
  • Bachelez H, Choon S-E, Marrakchi S, et al. Inhibition of the Interleukin-36 Pathway for the Treatment of Generalized Pustular Psoriasis. N Engl J Med. 2019;380:981–983. doi:10.1056/NEJMc1811317.
  • Su Z, Paulsboe S, Wetter J, et al. IL-36 Receptor Antagonistic Antibodies Inhibit Inflammatory Responses in Preclinical Models of Psoriasiform Dermatitis. Exp Dermatol. 2019;28:113–120. doi:10.1111/exd.13841.
  • Bonifati C, Carducci M, Fei PC, et al. Correlated Increases of Tumour Necrosis Factor-α, Interleukin-6 and Granulocyte Monocyte-Colony Stimulating Factor Levels in Suction Blister Fluids and Sera of Psoriatic Patients Relationships with Disease Severity. Clin Exp Dermatol. 1994;19:383–387. doi:10.1111/j.1365-2230.1994.tb02687.x.
  • Alvarez-Ruiz S, Peñas PF, Fernández-Herrera J, Sánchez-Pérez J, Fraga J. Maculopapular Eruption with Enlarged Macrophages in Eight Patients Receiving G-CSF or GM-CSF. J Eur Acad Dermatol Venereol. 2004;18:310–313. doi:10.1111/j.1468-3083.2004.00872.x.
  • Kelly R, Marsden RA, Bevan D. Exacerbation of Psoriasis with GM-CSF Therapy. Br J Dermatol. 1993;128:468–469. doi:10.1111/j.1365-2133.1993.tb00218.x.
  • Koziczak-Holbro M, Joyce C, Glück A, et al. IRAK-4 Kinase Activity Is Required for Interleukin-1 (IL-1) Receptor- and Toll-like Receptor 7-Mediated Signaling and Gene Expression. J Biol Chem. 2007;282:13552–13560. doi:10.1074/jbc.M700548200.
  • Lai Y, Gallo RL. AMPed Up Immunity: how Antimicrobial Peptides Have Multiple Roles in Immune Defense. Trends Immunol. 2009;30:131–141. doi:10.1016/j.it.2008.12.003.
  • Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. Int J Mol Sci. 2019;20. doi:10.3390/ijms20061475
  • Mylonas A, Conrad C. Psoriasis: classical vs. Paradoxical. The Yin-Yang of TNF and Type I Interferon. Front Immunol. 2018;9:2746. doi:10.3389/fimmu.2018.02746.
  • Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of Psoriasis. Annu Rev Immunol. 2014;32:227–255. doi:10.1146/annurev-immunol-032713-120225.
  • Liu C, Lin J, Langevine C, et al. Discovery of BMS-986202: a Clinical Tyk2 Inhibitor That Binds to Tyk2 JH2. J Med Chem. 2021;64:677–694. doi:10.1021/acs.jmedchem.0c01698.
  • AlShobaili HA, Shahzad M, Al-Marshood A, Khalil A, Settin A, Barrimah I. Genetic Background of Psoriasis. Int J Health Sci (Qassim). 2010;4:23–29.
  • Greb JE, Goldminz AM, Elder JT, et al. Psoriasis. Nat Rev Dis Primers. 2016;2:16082. doi:10.1038/nrdp.2016.82.
  • Baran W, Szepietowski JC, Mazur G, Baran EA. 308 Promoter Polymorphism of Tumor Necrosis Factor Alpha Gene Does Not Associate with the Susceptibility to Psoriasis Vulgaris. No Difference Either between Psoriasis Type I and Type II Patients. Acta Dermatovenerol Alp Pannonica Adriat. 2006;15:113–118.
  • Carroll JM, Romero MR, Watt FM. Suprabasal Integrin Expression in the Epidermis of Transgenic Mice Results in Developmental Defects and a Phenotype Resembling Psoriasis. Cell. 1995;83:957–968. doi:10.1016/0092-8674(95)90211-2.
  • Signa S, Campione E, Rusmini M, et al. Whole Exome Sequencing Approach to Childhood Onset Familial Erythrodermic Psoriasis Unravels a Novel Mutation of CARD14 Requiring Unusual High Doses of Ustekinumab. Pediatr Rheumatol Online J. 2019;17:38. doi:10.1186/s12969-019-0336-3.
  • Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous Inflammatory Disease in Transgenic Rats Expressing HLA-B27 and Human Beta 2m: an Animal Model of HLA-B27-Associated Human Disorders. Cell. 1990;63:1099–1112. doi:10.1016/0092-8674(90)90512-d.
  • Stern RS. Psoriasis. Lancet. 1997;350:349–353. doi:10.1016/S0140-6736(97)05257-4.
  • Boehncke WH, Sterry W, Hainzl A, Scheffold W, Kaufmann R. Psoriasiform Architecture of Murine Epidermis Overlying Human Psoriatic Dermis Transplanted onto SCID Mice. Arch Dermatol Res. 1994;286:325–330. doi:10.1007/BF00402223.
  • Furrow RE, Christiansen FB, Feldman MW. Environment-Sensitive Epigenetics and the Heritability of Complex Diseases. Genetics. 2011;189:1377–1387. doi:10.1534/genetics.111.131912.
  • Fogel O, Richard-Miceli C, Tost J. Epigenetic Changes in Chronic Inflammatory Diseases. Adv Protein Chem Struct Biol. 2017;106:139–189. doi:10.1016/bs.apcsb.2016.09.003.
  • Mervis JS, McGee JS. Epigenetic Therapy and Dermatologic Disease: moving beyond CTCL. J Dermatolog Treat. 2019;30:68–73. doi:10.1080/09546634.2018.1473550.
  • Caputo V, Strafella C, Termine A, et al. Overview of the Molecular Determinants Contributing to the Expression of Psoriasis and Psoriatic Arthritis Phenotypes. J Cell Mol Med. 2020;24:13554–13563. doi:10.1111/jcmm.15742.
  • Campione E, Cosio T, Lanna C, et al. Predictive Role of Vitamin A Serum Concentration in Psoriatic Patients Treated with IL-17 Inhibitors to Prevent Skin and Systemic Fungal Infections. J Pharmacol Sci. 2020;144:52–56. doi:10.1016/j.jphs.2020.06.003.