449
Views
8
CrossRef citations to date
0
Altmetric
Review

Experimental Dopamine Reuptake Inhibitors in Parkinson’s Disease: A Review of the Evidence

ORCID Icon
Pages 397-408 | Published online: 29 Mar 2021

References

  • Przuntek H, Müller T, Riederer P. Diagnostic staging of Parkinson’s disease: conceptual aspects. J Neural Transm (Vienna). 2004;111(2):201–216. doi:10.1007/s00702-003-0102-y
  • De Leonibus E, Verheij MM, Mele A, Cools A. Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions. Eur J Neurosci. 2006;23(5):1332–1340. doi:10.1111/j.1460-9568.2006.04658.x
  • De Leonibus E, Pascucci T, Lopez S, Oliverio A, Amalric M, Mele A. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology (Berl). 2007;194(4):517–525. doi:10.1007/s00213-007-0862-4
  • Pagonabarraga J, Kulisevsky J. Apathy in Parkinson’s disease. Int Rev Neurobiol. 2017;133:657–678.
  • Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia. 2016;6:123–148.
  • Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism–chronic treatment with L-dopa. N Engl J Med. 1969;280(7):337–345. doi:10.1056/NEJM196902132800701
  • Foley P, The L-DOPA story revisited. Further surprises to be expected? J Neural Transm Suppl. 2000;(60):1–20. doi:10.1007/978-3-7091-6301-6_1
  • Birkmayer W, Hornykiewicz O. The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord. 1998;4(2):59–60. doi:10.1016/S1353-8020(98)00013-3
  • Müller T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert Opin Drug Metab Toxicol. 2020;16(5):403–414. doi:10.1080/17425255.2020.1750596
  • Hardoff R, Sula M, Tamir A, et al. Gastric emptying time and gastric motility in patients with Parkinson’s disease. Mov Disord. 2001;16(6):1041–1047. doi:10.1002/mds.1203
  • Müller T, Erdmann C, Bremen D, et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin Neuropharmacol. 2006;29(2):61–67. doi:10.1097/00002826-200603000-00001
  • Müller T. Pharmacokinetic considerations for the use of levodopa in the treatment of Parkinson disease: focus on levodopa/carbidopa/entacapone for treatment of levodopa-associated motor complications. Clin Neuropharmacol. 2013;36(3):84–91. doi:10.1097/WNF.0b013e31828f3385
  • Schuurkes JA, Van Nueten JM. Is dopamine an inhibitory modulator of gastrointestinal motility? Scand J Gastroenterol Suppl. 1981;67:33–36.
  • Muhlack S, Herrmann L, Salmen S, Müller T. Fewer fluctuations, higher maximum concentration and better motor response of levodopa with catechol-O-methyltransferase inhibition. J Neural Transm. 2014;121(11):1357–1366. doi:10.1007/s00702-014-1213-3
  • Riederer P, Müller T. Monoamine oxidase-B inhibitors in the treatment of Parkinson’s disease: clinical-pharmacological aspects. J Neural Transm (Vienna). 2018;125(11):1751–1757. doi:10.1007/s00702-018-1876-2
  • Przuntek H, Conrad B, Dichgans J, et al. SELEDO: a 5-year long-term trial on the effect of selegiline in early Parkinsonian patients treated with levodopa. Eur J Neurol. 1999;6(2):141–150. doi:10.1111/j.1468-1331.1999.tb00007.x
  • Ramot Y, Nyska A, Maronpot RR, et al. Ninety-day local tolerability and toxicity study of ND0612, a novel formulation of levodopa/carbidopa, administered by subcutaneous continuous infusion in minipigs. Toxicol Pathol. 2017;45(6):764–773. doi:10.1177/0192623317729891
  • Klostermann F, Jugel C, Müller T, Marzinzik F. Malnutritional neuropathy under intestinal levodopa infusion. J Neural Transm (Vienna). 2012;119(3):369–372. doi:10.1007/s00702-011-0689-3
  • Müller T, Laar TV, Cornblath DR. Peripheral neuropathy in Parkinson’s disease: levodopa exposure and implications for duodenal delivery. Parkinsonism Relat Disord. 2013;19(5):501–507. doi:10.1016/j.parkreldis.2013.02.006
  • Billings JL, Gordon SL, Rawling T, et al. l-3,4-dihydroxyphenylalanine (l-DOPA) modulates brain iron, dopaminergic neurodegeneration and motor dysfunction in iron overload and mutant alpha-synuclein mouse models of Parkinson’s disease. J Neurochem. 2019;150(1):88–106. doi:10.1111/jnc.14676
  • Sian-Hulsmann J, Riederer P. The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease. J Neural Transm (Vienna). 2020;127(5):749–754. doi:10.1007/s00702-020-02192-0
  • Sun Y, Pham AN, Hider RC, Zheng H, Waite TD. Effectiveness of the iron chelator CN128 in mitigating the formation of dopamine oxidation products associated with the progression of Parkinson’s disease. ACS Chem Neurosci. 2020;11(21):3646–3657. doi:10.1021/acschemneuro.0c00557
  • Zhou ZD, Lan YH, Tan EK, Lim TM. Iron species-mediated dopamine oxidation, proteasome inhibition, and dopaminergic cell demise: implications for iron-related dopaminergic neuron degeneration. Free Radic Biol Med. 2010;49(12):1856–1871. doi:10.1016/j.freeradbiomed.2010.09.010
  • Ekesbo A, Rydin E, Torstenson R, Sydow O, Laengstrom B, Tedroff J. Dopamine autoreceptor function is lost in advanced Parkinson’s disease. Neurology. 1999;52(1):120–125. doi:10.1212/WNL.52.1.120
  • Fletcher EA, Redfern PH. The effect of amantadine on the uptake of dopamine and noradrenaline by rat brain homogenates. J Pharm Pharmacol. 1970;22(12):957–959. doi:10.1111/j.2042-7158.1970.tb08486.x
  • Heimans RL, Rand MJ, Fennessy MR. Effects of amantadine on uptake and release of dopamine by a particulate fraction of rat basal ganglia. J Pharm Pharmacol. 1972;24(11):875–879. doi:10.1111/j.2042-7158.1972.tb08906.x
  • Schendzielorz N, Oinas JP, Myohanen TT, Reenila I, Raasmaja A, Mannisto PT. Catechol-O-methyltransferase (COMT) protein expression and activity after dopaminergic and noradrenergic lesions of the rat brain. PLoS One. 2013;8(4):e61392. doi:10.1371/journal.pone.0061392
  • Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P. Dopamine, but not norepinephrine or serotonin, reuptake inhibition reverses motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Pharmacol Exp Ther. 2002;303(3):952–958. doi:10.1124/jpet.102.039743
  • Giordano N, Iemolo A, Mancini M, et al. Motor learning and metaplasticity in striatal neurons: relevance for Parkinson’s disease. Brain. 2018;141(2):505–520. doi:10.1093/brain/awx351
  • Longhena F, Faustini G, Missale C, Pizzi M, Bellucci A. Dopamine transporter/ alpha-synuclein complexes are altered in the post mortem caudate putamen of Parkinson’s disease: an in situ proximity ligation assay study. Int J Mol Sci. 2018;19(6):19. doi:10.3390/ijms19061611
  • Berg D, Godau J, Seppi K, et al. The PRIPS study: screening battery for subjects at risk for Parkinson’s disease. Eur J Neurol. 2013;20(1):102–108. doi:10.1111/j.1468-1331.2012.03798.x
  • Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther. 2002;303(2):791–804. doi:10.1124/jpet.102.039867
  • Thobois S. Proposed dose equivalence for rapid switch between dopamine receptor agonists in Parkinson’s disease: a review of the literature. Clin Ther. 2006;28(1):1–12. doi:10.1016/j.clinthera.2005.12.003
  • Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–2508.
  • Witjas T, Kaphan E, Azulay JP, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology. 2002;59(3):408–413. doi:10.1212/WNL.59.3.408
  • Witjas T, Eusebio A, Fluchere F, Azulay JP. Addictive behaviors and Parkinson’s disease. Rev Neurol (Paris). 2012;168(8–9):624–633. doi:10.1016/j.neurol.2012.06.014
  • Müller T, Öhm G, Eilert K, et al. Benefit on motor and non-motor behavior in a specialized unit for Parkinson’s disease. J Neural Transm (Vienna). 2017;124(6):715–720. doi:10.1007/s00702-017-1701-3
  • de Chazeron I, Durif F, Chereau-Boudet I, et al. Compulsive eating behaviors in Parkinson’s disease. Eat Weight Disord. 2019;24(3):421–429. doi:10.1007/s40519-019-00648-1
  • Delpont B, Lhommee E, Klinger H, et al. Psychostimulant effect of dopaminergic treatment and addictions in Parkinson’s disease. Mov Disord. 2017;32(11):1566–1573. doi:10.1002/mds.27101
  • Martini A, Dal LD, Edelstyn NMJ, Salgarello M, Lugoboni F, Tamburin S. Dopaminergic neurotransmission in patients with Parkinson’s disease and impulse control disorders: a systematic review and meta-analysis of PET and SPECT studies. Front Neurol. 2018;9:1018. doi:10.3389/fneur.2018.01018
  • Melamed E, Hefti F, Wurtman RJ. Nonaminergic striatal neurons convert exogenous L-dopa to dopamine in parkinsonism. Ann Neurol. 1980;8(6):558–563. doi:10.1002/ana.410080603
  • Margolesky J, Singer C. Extended-release oral capsule of carbidopa-levodopa in Parkinson disease. Ther Adv Neurol Disord. 2018;11:1756285617737728. doi:10.1177/1756285617737728
  • Nausieda PA, Hsu A, Elmer L, et al. Conversion to IPX066 from standard levodopa formulations in advanced Parkinson’s disease: experience in clinical trials. J Parkinsons Dis. 2015;5(4):837–845. doi:10.3233/JPD-150622
  • Calabrese V, Di MA, Marino G, et al. Rapamycin, by inhibiting mTORC1 signaling, prevents the loss of striatal bidirectional synaptic plasticity in a rat model of L-DOPA-induced dyskinesia. Front Aging Neurosci. 2020;12:230. doi:10.3389/fnagi.2020.00230
  • Eshraghi M, Ramirez-Jarquin UN, Shahani N, et al. RasGRP1 is a causal factor in the development of l-DOPA-induced dyskinesia in Parkinson’s disease. Sci Adv. 2020;6:eaaz7001. doi:10.1126/sciadv.aaz7001
  • Guttler C, Altschuler J, Tanev K, et al. Levodopa-induced dyskinesia are mediated by cortical gamma oscillations in experimental parkinsonism. Mov Disord. 2020. doi:10.1002/mds.28403
  • Costa C, Sgobio C, Siliquini S, et al. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain. 2012;135(6):1884–1899. doi:10.1093/brain/aws101
  • Decressac M, Mattsson B, Lundblad M, Weikop P, Bjorklund A. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons. Neurobiol Dis. 2012;45(3):939–953. doi:10.1016/j.nbd.2011.12.013
  • Durante V, de Iure A, Loffredo V. Alpha-synuclein targets GluN2A NMDA receptor subunit causing striatal synaptic dysfunction and visuospatial memory alteration. Brain. 2019;142(5):1365–1385. doi:10.1093/brain/awz065
  • Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P. Dopamine reuptake inhibition and failure to evoke dyskinesia in MPTP-treated primates. Eur J Pharmacol. 2002;451(2):157–160. doi:10.1016/S0014-2999(02)02268-9
  • Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Kruger J, Jenner P. The monoamine reuptake blocker brasofensine reverses akinesia without dyskinesia in MPTP-treated and levodopa-primed common marmosets. Mov Disord. 2002;17(5):877–886. doi:10.1002/mds.10238
  • Frackiewicz EJ, Jhee SS, Shiovitz TM, et al. Brasofensine treatment for Parkinson’s disease in combination with levodopa/carbidopa. Ann Pharmacother. 2002;36(2):225–230. doi:10.1345/aph.1A152
  • Yu P. Brasofensine NeuroSearch. Curr Opin Investig Drugs. 2000;1:504–507.
  • Cheng WC, Liu CM, Hsieh MH, Hwang TJ. Bupropion-related parkinsonism and dystonia. J Clin Psychopharmacol. 2009;29(6):616–618. doi:10.1097/JCP.0b013e3181c07a3f
  • Goetz CG, Tanner CM, Klawans HL. Bupropion in Parkinson’s disease. Neurology. 1984;34(8):1092–1094. doi:10.1212/WNL.34.8.1092
  • Vegda M, Panda S. Bupropion-induced dystonia in a patient with parkinson’s disease. J Mov Disord. 2020;13(3):241–243. doi:10.14802/jmd.20046
  • Benincasa D, Pellicano C, Fanciulli A, Pontieri FE. Bupropion abates dopamine agonist-mediated compulsive behaviors in Parkinson’s disease. Mov Disord. 2011;26(2):355–357. doi:10.1002/mds.23395
  • Raskin S, Durst R. Bupropion as the treatment of choice in depression associated with Parkinson’s disease and it’s various treatments. Med Hypotheses. 2010;75(6):544–546. doi:10.1016/j.mehy.2010.07.024
  • Zaluska M, Dyduch A. Bupropion in the treatment of depression in Parkinson’s disease. Int Psychogeriatr. 2011;23(2):325–327. doi:10.1017/S1041610210001687
  • Bedard P, Parkes JD, Marsden CD. Nomifensine in Parkinson’s disease. Br J Clin Pharmacol. 1977;4(Suppl 2):187S–190S. doi:10.1111/j.1365-2125.1977.tb05751.x
  • Park DM, Findley LJ, Teychenne PF. Nomifensine in parkinsonism. Br J Clin Pharmacol. 1977;4(Suppl 2):185S–186S. doi:10.1111/j.1365-2125.1977.tb05750.x
  • Park DM, Findley LJ, Hanks G, Sandler M. Nomifensine: effect in Parkinsonian patients not receiving levodopa. J Neurol Neurosurg Psychiatry. 1981;44(4):352–354. doi:10.1136/jnnp.44.4.352
  • Teychenne PF, Park DM, Findley LJ, Rose FC, Calne DB. Nomifensine in parkinsonism. J Neurol Neurosurg Psychiatry. 1976;39(12):1219–1221. doi:10.1136/jnnp.39.12.1219
  • Kapur A. Is methylphenidate beneficial and safe in pharmacological cognitive enhancement? CNS Drugs. 2020;34:1045–1062.
  • Lou JS. Fatigue in Parkinson’s disease and potential interventions. NeuroRehabilitation. 2015;37(1):25–34. doi:10.3233/NRE-151238
  • Nutt JG, Carter JH, Carlson NE. Effects of methylphenidate on response to oral levodopa: a double-blind clinical trial. Arch Neurol. 2007;64(3):319–323. doi:10.1001/archneur.64.3.319
  • Shen Y, Huang JY, Li J, Liu CF. Excessive daytime sleepiness in parkinson’s disease: clinical implications and management. Chin Med J (Engl). 2018;131(8):974–981. doi:10.4103/0366-6999.229889
  • Huot P, Johnston TH, Gandy MN, et al. The monoamine re-uptake inhibitor UWA-101 improves motor fluctuations in the MPTP-lesioned common marmoset. PLoS One. 2012;7(9):e45587. doi:10.1371/journal.pone.0045587
  • Huot P, Johnston TH, Lewis KD, et al. UWA-121, a mixed dopamine and serotonin re-uptake inhibitor, enhances L-DOPA anti-parkinsonian action without worsening dyskinesia or psychosis-like behaviours in the MPTP-lesioned common marmoset. Neuropharmacology. 2014;82:76–87. doi:10.1016/j.neuropharm.2014.01.012
  • Johnston TH, Millar Z, Huot P, et al. A novel MDMA analogue, UWA-101, that lacks psychoactivity and cytotoxicity, enhances l-DOPA benefit in parkinsonian primates. FASEB J. 2012;26(5):2154–2163. doi:10.1096/fj.11-195016
  • Hauser RA, Salin L, Juhel N, Konyago VL. Randomized trial of the triple monoamine reuptake inhibitor NS 2330 (tesofensine) in early Parkinson’s disease. Mov Disord. 2007;22(3):359–365. doi:10.1002/mds.21258
  • Rascol O, Poewe W, Lees A, et al. Tesofensine (NS 2330), a monoamine reuptake inhibitor, in patients with advanced Parkinson disease and motor fluctuations: the ADVANS study. Arch Neurol. 2008;65(5):577–583. doi:10.1001/archneur.65.5.577
  • Huot P, Fox SH, Brotchie JM. Dopamine reuptake inhibitors in parkinson’s disease: a review of nonhuman primate studies and clinical trials. J Pharmacol Exp Ther. 2016;357(3):562–569. doi:10.1124/jpet.116.232371
  • Cools R. Dopaminergic modulation of cognitive function-implications for L-DOPA treatment in Parkinson’s disease. Neurosci Biobehav Rev. 2006;30:1–23.
  • Fava M, Rosenbaum JF, Kolsky AR, et al. Open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder. J Clin Psychopharmacol. 1999;19(4):329–335. doi:10.1097/00004714-199908000-00008
  • Moreau JL, Borgulya J, Jenck F, Martin JR. Tolcapone: a potential new antidepressant detected in a novel animal model of depression. Behav Pharmacol. 1994;5(3):344–350. doi:10.1097/00008877-199406000-00012
  • Apud JA, Weinberger DR. Treatment of cognitive deficits associated with schizophrenia: potential role of catechol-O-methyltransferase inhibitors. CNS Drugs. 2007;21(7):535–557. doi:10.2165/00023210-200721070-00002
  • Apud JA, Mattay V, Chen J, et al. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology. 2007;32(5):1011–1020. doi:10.1038/sj.npp.1301227
  • Fava M, Rosenbaum JF, Kolsky AR, et al. Open study of the catechol-O-methyltransferase inhibitor tolcapone in major depressive disorder. J Clin Psychopharmacol. 2007;22(4):329–335.
  • Hauser RA, Molho E, Shale H, Pedder S, Dorflinger EE. A pilot evaluation of the tolerability, safety, and efficacy of tolcapone alone and in combination with oral selegiline in untreated Parkinson’s disease patients. Tolcapone De novo study group. Mov Disord. 1998;13(4):643–647. doi:10.1002/mds.870130406
  • Männisto PT, Kaakkola S. Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev. 1999;51(4):593–628.
  • Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs. 2015;75(2):157–174. doi:10.1007/s40265-014-0343-0
  • Müller T, Kuhn W, Möhr JD. Evaluating ADS5102 (amantadine) for the treatment of Parkinson’s disease patients with dyskinesia. Expert Opin Pharmacother. 2019;20(10):1181–1187. doi:10.1080/14656566.2019.1612365
  • Rinne UK. Treatment of early Parkinson’s disease. Parkinsonism Relat Disord. 2000;7(1):59–62. doi:10.1016/S1353-8020(00)00040-7
  • Silver DE, Ruggieri S. Initiating therapy for Parkinson’s disease. Neurology. 1998;50:S18–S22. doi:10.1212/WNL.50.6_Suppl_6.S18
  • Fahn S. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J Neurol. 2005;252(Suppl 4):IV37–IV42. doi:10.1007/s00415-005-4008-5
  • Hinz M, Stein A, Cole T. The Parkinson’s disease death rate: carbidopa and vitamin B6. Clin Pharmacol. 2014;6:161–169. doi:10.2147/CPAA.S70707
  • Müller T. Detoxification and antioxidative therapy for levodopa-induced neurodegeneration in Parkinson’s disease. Expert Rev Neurother. 2013;13:707–718. doi:10.1586/ern.13.50
  • Müller T, Trommer I, Muhlack S, Mueller BK. Levodopa increases oxidative stress and repulsive guidance molecule A levels: a pilot study in patients with Parkinson’s disease. J Neural Transm (Vienna). 2016;123(4):401–406. doi:10.1007/s00702-016-1519-4
  • Leal RM, Rascol O, Ferreira JJ. The “long and winding road” of the disease-modifying effects of levodopa has not ended yet. Mov Disord. 2020;35(3):397–399. doi:10.1002/mds.27961
  • Verschuur CVM, Suwijn SR, Boel JA, et al. Randomized delayed-start trial of levodopa in Parkinson’s disease. N Engl J Med. 2019;380(4):315–324. doi:10.1056/NEJMoa1809983
  • Rma DB, Clarke CE, Espay AJ, Fox SH, Lang AE. Initiation of pharmacological therapy in Parkinson’s disease: when, why, and how. Lancet Neurol. 2020;19(5):452–461. doi:10.1016/S1474-4422(20)30036-3
  • Müller T. Entacapone. Expert Opin Drug Metab Toxicol. 2010;6(983–993):983–993. doi:10.1517/17425255.2010.502167
  • Stocchi F, Rascol O, Kieburtz K, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68(1):18–27. doi:10.1002/ana.22060
  • Warren OC, Kieburtz K, Rascol O, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28(8):1064–1071. doi:10.1002/mds.25364
  • Levein NG, Thorn SE, Wattwil M. Dopamine delays gastric emptying and prolongs orocaecal transit time in volunteers. Eur J Anaesthesiol. 1999;16(4):246–250. doi:10.1097/00003643-199904000-00006
  • Barone JA. Domperidone: a peripherally acting dopamine 2-receptor antagonist. Ann Pharmacother. 1999;33(4):429–440. doi:10.1345/aph.18003
  • Shuto K, Shiozaki Z, Kojima T, Tanaka M. Antagonism of KW-5338 (domperidone) against emesis and depression of intestinal motility induced by L-DOPA. J Pharmacobiodyn. 1980;3(12):709–714. doi:10.1248/bpb1978.3.709
  • Koprdova R, Csatlosova K, Durisova B, et al. Electrophysiology and behavioral assessment of the new molecule SMe1EC2M3 as a representative of the future class of triple reuptake inhibitors. Molecules. 2019;24(23):24. doi:10.3390/molecules24234218
  • Chu Y, Muller S, Tavares A, et al. Intrastriatal alpha-synuclein fibrils in monkeys: spreading, imaging and neuropathological changes. Brain. 2019;142(11):3565–3579. doi:10.1093/brain/awz296
  • Schapira AH, McDermott MP, Barone P, et al. Pramipexole in patients with early Parkinson’s disease (PROUD): a randomised delayed-start trial. Lancet Neurol. 2013;12(8):747–755. doi:10.1016/S1474-4422(13)70117-0
  • Whone AL, Watts RL, Stoessl AJ, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol. 2003;54(1):93–101. doi:10.1002/ana.10609
  • Bellucci A, Navarria L, Falarti E, et al. Redistribution of DAT/alpha-synuclein complexes visualized by “in situ” proximity ligation assay in transgenic mice modelling early Parkinson’s disease. PLoS One. 2011;6(12):e27959. doi:10.1371/journal.pone.0027959
  • Chadchankar H, Ihalainen J, Tanila H, Yavich L. Decreased reuptake of dopamine in the dorsal striatum in the absence of alpha-synuclein. Brain Res. 2011;1382:37–44. doi:10.1016/j.brainres.2011.01.064
  • Lee FJ, Liu F, Pristupa ZB, Niznik HB. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J. 2001;15(6):916–926. doi:10.1096/fj.00-0334com
  • Wersinger C, Prou D, Vernier P, Sidhu A. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress. FASEB J. 2003;17(14):2151–2153. doi:10.1096/fj.03-0152fje
  • Bellucci A, Collo G, Sarnico I, Battistin L, Missale C, Spano P. Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D2D3 receptor activation. J Neurochem. 2008;106(2):560–577. doi:10.1111/j.1471-4159.2008.05406.x
  • Faustini G, Longhena F, Varanita T, et al. Synapsin III deficiency hampers alpha-synuclein aggregation, striatal synaptic damage and nigral cell loss in an AAV-based mouse model of Parkinson’s disease. Acta Neuropathol. 2018;136(4):621–639. doi:10.1007/s00401-018-1892-1
  • Faustini G, Longhena F, Bruno A, et al. Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate. Neurobiol Dis. 2020;138:104789. doi:10.1016/j.nbd.2020.104789