301
Views
3
CrossRef citations to date
0
Altmetric
Review

Montelukast: The New Therapeutic Option for the Treatment of Epilepsy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 23-31 | Published online: 20 Jan 2021

References

  • Thijs RD, Surges R, O’Brien TJ, Sander JW. Epilepsy in adults. Lancet. 2019;393(10172):689–701. doi:10.1016/S0140-6736(18)32596-0
  • Brueggeman L, Sturgeon ML, Martin RM, et al. Drug repositioning in epilepsy reveals novel antiseizure candidates. Ann Clin Transl Neurol. 2019;6(2):295–309. doi:10.1002/acn3.703
  • Guberman A. Vagus nerve stimulation in the treatment of epilepsy. Cmaj. 2004;171(10):1165–1166. doi:10.1503/cmaj.1041039
  • D’Ambrosio R, Eastman CL, Fattore C, Perucca E. Novel frontiers in epilepsy treatments: preventing epileptogenesis by targeting inflammation. Expert Rev Neurother. 2013;13(6):615–625. doi:10.1586/ern.13.54
  • Ventola CL. Epilepsy management: newer agents, unmet needs, and future treatment strategies. Pharm Ther. 2014;39(11):776.
  • Asconapé JJ. Use of antiepileptic drugs in hepatic and renal disease. In: Handbook of Clinical Neurology. Vol. 119. Elsevier; 2014:417–432.
  • Wahab A. Difficulties in treatment and management of epilepsy and challenges in new drug development. Pharmaceuticals. 2010;3(7):2090–2110. doi:10.3390/ph3072090
  • Zhou L, Sun X, Shi Y, Liu J, Luan G, Yang Y. Cysteinyl leukotriene receptor type 1 antagonist montelukast protects against injury of blood–brain barrier. Inflammopharmacology. 2019;27(5):933–940. doi:10.1007/s10787-019-00611-7
  • Scholz BH. Neuropsychiatric disorder and montelukast: a case report and vigibase® analysis. Arch Dis Child. 2019;104(1):54–55.
  • Lai J, Mei ZL, Wang H, et al. Montelukast rescues primary neurons against Aβ1-42-induced toxicity through inhibiting CysLT1R-mediated NF-κB signaling. Neurochem Int. 2014;75(May):26–31. doi:10.1016/j.neuint.2014.05.006
  • Hoxha M, Lewis-Mikhael A-M, Bueno-Cavanillas A. Potential role of leukotriene receptor antagonists in reducing cardiovascular and cerbrovascular risk: a systematic review of human clinical trials and in vivo animal studies. Biomed Pharmacother. 2018;106:956–965. doi:10.1016/j.biopha.2018.07.033
  • Fleck J, Temp FR, Marafiga JR, et al. Montelukast reduces seizures in pentylenetetrazol-kindled mice. Brazilian J Med Biol Res. 2016;49(4):1–7. doi:10.1590/1414-431X20155031
  • Cevik B, Solmaz V, Aksoy D, Erbas O. Montelukast inhibits pentylenetetrazol-induced seizures in rats. Med Sci Monit. 2015;21:869–874. doi:10.12659/MSM.892932
  • Wang D, DuBois RN. Eicosanoids and cancer. Nat Rev Cancer. 2010;10(3):181. doi:10.1038/nrc2809
  • Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl leukotrienes and their receptors: emerging therapeutic targets in central nervous system disorders. CNS Neurosci Ther. 2016;22(12):943–951. doi:10.1111/cns.12596
  • Izumi T, Yokomizo T, Obinata H, Ogasawara H, Shimizu T. Leukotriene receptors: classification, gene expression, and signal transduction. J Biochem. 2002;132(1):1–6. doi:10.1093/oxfordjournals.jbchem.a003185
  • Sun GY, Shelat PB, Jensen MB, He Y, Sun AY, Simonyi A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med. 2010;12(2):133–148. doi:10.1007/s12017-009-8092-z
  • Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer’s disease. Eur J Pharmacol. 2019;842:208–220. doi:10.1016/j.ejphar.2018.10.040
  • Gelosa P, Colazzo F, Tremoli E, Sironi L, Castiglioni L. Cysteinyl leukotrienes as potential pharmacological targets for cerebral diseases. Mediators Inflamm. 2017;2017:1–15. doi:10.1155/2017/3454212
  • Williamson JR, Cooper RH, Joseph SK, Thomas AP. Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. Am J Physiol Physiol. 1985;248(3):C203–C216. doi:10.1152/ajpcell.1985.248.3.C203
  • Rehni AK, Singh TG. Modulation of leukotriene D4 attenuates the development of seizures in mice. Prostaglandins Leukot Essent Fat Acids. 2011;85(2):97–106. doi:10.1016/j.plefa.2011.04.003
  • Savari S, Vinnakota K, Zhang Y, Sjölander A. Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World J Gastroenterol. 2014;20(4):968. doi:10.3748/wjg.v20.i4.968
  • Kawai Y, Narita Y, Yamawaki-Ogata A, Usui A, Komori K. Montelukast, a cysteinyl leukotriene receptor 1 antagonist, induces m2 macrophage polarization and inhibits murine aortic aneurysm formation. Biomed Res Int. 2019;2019:1–11. doi:10.1155/2019/9104680
  • Yokomizo T, Nakamura M, Shimizu T. Leukotriene receptors as potential therapeutic targets. J Clin Invest. 2018;128(7):2691–2701. doi:10.1172/JCI97946
  • Kaya Z, Yayla M, Cinar I, et al. Effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, on a rat model of acute bacterial sinonasal inflammation. Am J Rhinol Allergy. 2019;33(5):559–566. doi:10.1177/1945892419852576
  • Dupré DJ, Le Gouill C, Gingras D, Rola-Pleszczynski M, Staňková J. Inverse agonist activity of selected ligands of the cysteinyl-leukotriene receptor 1. J Pharmacol Exp Ther. 2004;309(1):102–108. doi:10.1124/jpet.103.059824
  • Laidlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. Clin Exp Allergy. 2012;42(9):1313–1320. doi:10.1111/j.1365-2222.2012.03982.x
  • Ciccarelli R, D’Alimonte I, Santavenere C, et al. Cysteinyl‐leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys‐LT1 receptors and mitogen‐activated protein kinase pathway. Eur J Neurosci. 2004;20(6):1514–1524. doi:10.1111/j.1460-9568.2004.03613.x
  • Robel S. Astroglial scarring and seizures: a cell biological perspective on epilepsy. Neurosci. 2017;23(2):152–168.
  • Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72.
  • Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7(1):31. doi:10.1038/nrneurol.2010.178
  • Sharma R, Leung WL, Zamani A, O’brien TJ, Espinosa PMC, Semple BD. Neuroinflammation in post-traumatic epilepsy: pathophysiology and tractable therapeutic targets. Brain Sci. 2019;9(11):318. doi:10.3390/brainsci9110318
  • Lucas S, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(S1):S232–S240. doi:10.1038/sj.bjp.0706400
  • Lenz QF, Arroyo DS, Temp FR, et al. Cysteinyl leukotriene receptor (CysLT) antagonists decrease pentylenetetrazol-induced seizures and blood–brain barrier dysfunction. Neuroscience. 2014;277:859–871. doi:10.1016/j.neuroscience.2014.07.058
  • Vezzani A, Friedman A, Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology. 2013;69:16–24. doi:10.1016/j.neuropharm.2012.04.004
  • Mansour RM, Ahmed MAE, El-Sahar AE, El Sayed NS. Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicol Appl Pharmacol. 2018;358(September):76–85. doi:10.1016/j.taap.2018.09.012
  • Sperk G, Lassmann H, Baran H, Kish SJ, Seitelberger F, Hornykiewicz O. Kainic acid induced seizures: neurochemical and histopathological changes. Neuroscience. 1983;10(4):1301–1315. doi:10.1016/0306-4522(83)90113-6
  • Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today. 2019;24(2):505–516. doi:10.1016/j.drudis.2018.09.008
  • Farias S, Frey LC, Murphy RC, Heidenreich KA. Injury-related production of cysteinyl leukotrienes contributes to brain damage following experimental traumatic brain injury. J Neurotrauma. 2009;26(11):1977–1986. doi:10.1089/neu.2009.0877
  • Palmer MR, Mathews WR, Hoffer BJ, Murphy RC. Electrophysiological response of cerebellar Purkinje neurons to leukotriene D4 and B4. J Pharmacol Exp Ther. 1981;219(1):91–96.
  • Van Vliet EA, Otte WM, Wadman WJ, et al. Blood-brain barrier leakage after status epilepticus in rapamycin-treated rats I: magnetic resonance imaging. Epilepsia. 2016;57(1):59–69. doi:10.1111/epi.13246
  • Rempe RG, Hartz AMS, Soldner ELB, et al. Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci. 2018;38(18):4301–4315. doi:10.1523/JNEUROSCI.2751-17.2018
  • Simmet T, Tippler B. Cysteinyl-leukotriene production during limbic seizures triggered by kainic acid. Brain Res. 1990;515(1–2):79–86. doi:10.1016/0006-8993(90)90579-Z
  • Theron AJ, Steel HC, Tintinger GR, Gravett CM, Anderson R, Feldman C. Cysteinyl leukotriene receptor-1 antagonists as modulators of innate immune cell function. J Immunol Res. 2014;2014:1–16. doi:10.1155/2014/608930
  • Zhao R, Shi WZ, Zhang YM, Fang SH, Wei EQ. Montelukast, a cysteinyl leukotriene receptor-1 antagonist, attenuates chronic brain injury after focal cerebral ischaemia in mice and rats. J Pharm Pharmacol. 2011;63(4):550–557. doi:10.1111/j.2042-7158.2010.01238.x
  • Kawai Y, Narita Y, Ogata A, Usui A, Komori K. Therapeutic potential of montelukast, cysteinyl leukotriene receptor 1 antagonist, for aortic aneurysm. Eur J Vasc Endovasc Surg. 2019;58(6):e419. doi:10.1016/j.ejvs.2019.06.1064
  • Health NI. Livertox: clinical and research information on drug-induced liver injury. US Natl Libr Med. 2017.
  • Montuschi P, Sala A, Dahlen S-E, Folco G. Pharmacological modulation of the leukotriene pathway in allergic airway disease. Drug Discov Today. 2007;12(9–10):404–412. doi:10.1016/j.drudis.2007.03.004
  • Saad MA, Abdelsalam RM, Kenawy SA, Attia AS. Montelukast, a cysteinyl leukotriene receptor-1 antagonist protects against hippocampal injury induced by transient global cerebral ischemia and reperfusion in rats. Neurochem Res. 2014;40(1):139–150. doi:10.1007/s11064-014-1478-9
  • Jadidi-Niaragh F, Mirshafiey A. Histamine and histamine receptors in pathogenesis and treatment of multiple sclerosis. Neuropharmacology. 2010;59(3):180–189. doi:10.1016/j.neuropharm.2010.05.005
  • Lin Y-C, Huang M-Y, Lee M-S, et al. Effects of montelukast on M2-related cytokine and chemokine in M2 macrophages. J Microbiol Immunol Infect. 2018;51(1):18–26. doi:10.1016/j.jmii.2016.04.005
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445. doi:10.1038/nature12034
  • Liu D, Ge S, Zhou G, et al. Montelukast inhibits matrix metalloproteinases expression in atherosclerotic rabbits. Cardiovasc Drugs Ther. 2009;23(6):431. doi:10.1007/s10557-009-6211-6
  • Bıber N, Toklu HZ, Solakoglu S, et al. Cysteinyl-leukotriene receptor antagonist montelukast decreases blood–brain barrier permeability but does not prevent oedema formation in traumatic brain injury. Brain Inj. 2009;23(6):577–584. doi:10.1080/02699050902926317
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584. doi:10.1038/nm.3407
  • Wang M-L, Huang X-J, Fang S-H, et al. Leukotriene D4 induces brain edema and enhances CysLT2 receptor-mediated aquaporin 4 expression. Biochem Biophys Res Commun. 2006;350(2):399–404. doi:10.1016/j.bbrc.2006.09.057
  • Takahashi Y, Imai K, Ikeda H, Kubota Y, Yamazaki E, Susa F. Open study of pranlukast add-on therapy in intractable partial epilepsy. Brain Dev. 2013;35(3):236–244. doi:10.1016/j.braindev.2012.04.001
  • Kobylarek D, Iwanowski P, Lewandowska Z, et al. Advances in the potential biomarkers of epilepsy. Front Neurol. 2019;10.
  • Hanisch U-K. Microglia as a source and target of cytokine activities in the brain. In: Microglia in the Regenerating and Degenerating Central Nervous System. Springer; 2002:79–124.
  • Rothhammer V, Quintana FJ. Control of autoimmune CNS inflammation by astrocytes. In: Seminars in Immunopathology. Vol. 37. Springer; 2015:625–638.
  • Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46(11):1724–1743. doi:10.1111/j.1528-1167.2005.00298.x
  • Awasthi A, Matsunaga Y, Yamada T. Amyloid-beta causes apoptosis of neuronal cells via caspase cascade, which can be prevented by amyloid-beta-derived short peptides. Exp Neurol. 2005;196(2):282–289. doi:10.1016/j.expneurol.2005.08.001
  • Tang -S-S, Hong H, Chen L, et al. Involvement of cysteinyl leukotriene receptor 1 in Aβ1–42-induced neurotoxicity in vitro and in vivo. Neurobiol Aging. 2014;35(3):590–599. doi:10.1016/j.neurobiolaging.2013.09.036
  • Sima X, Xu J, Li J, Zhong W, You C. Expression of β‑amyloid precursor protein in refractory epilepsy. Mol Med Rep. 2014;9(4):1242–1248. doi:10.3892/mmr.2014.1977
  • Costa C, Parnetti L, D’Amelio M, et al. Epilepsy, amyloid-β, and D1 dopamine receptors: a possible pathogenetic link? Neurobiol Aging. 2016;48:161–171. doi:10.1016/j.neurobiolaging.2016.08.025
  • Bales KR, Du Y, Dodel RC, Yan G-M, Hamilton-Byrd E, Paul SM. The NF-κB/Rel family of proteins mediates Aβ-induced neurotoxicity and glial activation. Mol Brain Res. 1998;57(1):63–72. doi:10.1016/S0169-328X(98)00066-7
  • Weiskirchen R. Commentary: montelukast prevents mice against acetaminophen-induced liver injury. Front Pharmacol. 2019;10:1289. doi:10.3389/fphar.2019.01289
  • Larner AJ. Epileptic seizures in AD patients. Neuromolecular Med. 2010;12(1):71–77. doi:10.1007/s12017-009-8076-z
  • Elwany NE. Protective effect of montelukast against pentylenetetrazole- induced acute seizures and kindling in mice. ZUMJ. 2015;21(6).
  • Fleck J, Marafiga JR, Jesse AC, Ribeiro LR, Rambo LM, Mello CF. Montelukast potentiates the anticonvulsant effect of phenobarbital in mice: an isobolographic analysis. Pharmacol Res. 2015;94:34–41. doi:10.1016/j.phrs.2015.02.001