79
Views
11
CrossRef citations to date
0
Altmetric
Original Research

The Pulsatile Modification Improves Hemodynamics and Attenuates Inflammatory Responses in Extracorporeal Membrane Oxygenation

ORCID Icon, , , &
Pages 1357-1364 | Published online: 12 Apr 2021

References

  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a Report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239–1242. doi:10.1001/jama.2020.2648
  • Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi:10.1056/NEJMoa2002032
  • Kowalewski M, Fina D, Słomka A, et al. COVID-19 and ECMO: the interplay between coagulation and inflammation-a narrative review. Crit Care. 2020;24(1):205. doi:10.1186/s13054-020-02925-3
  • Matteucci M, Fina D, Jiritano F, et al. The use of extracorporeal membrane oxygenation in the setting of postinfarction mechanical complications: outcome analysis of the extracorporeal life support organization registry. Interact Cardiovasc Thorac Surg. 2020;31(3):369–374. doi:10.1093/icvts/ivaa108
  • Salameh A, Kühne L, Grassl M, et al. Protective effects of pulsatile flow during cardiopulmonary bypass. Ann Thorac Surg. 2015;99(1):192–199. doi:10.1016/j.athoracsur.2014.07.070
  • Borulu F, Hanedan MO, Coşkun C, Emir İ, Mataraci İ. Investigation of the effect of pulsatile and nonpulsatile flow on kidney in coronary surgery with NIRS. Heart Surg Forum. 2020;23(4):E401–e6. doi:10.1532/hsf.2341
  • Sunagawa G, Koprivanac M, Karimov JH, Moazami N, Fukamachi K. Is a pulse absolutely necessary during cardiopulmonary bypass? Expert Rev Med Devices. 2017;14(1):27–35. doi:10.1080/17434440.2017.1265445
  • Kadiroğulları E, Sen O, Gode S, et al. Effect of pulsatile cardiopulmonary bypass in adult heart surgery. Heart Surg Forum. 2020;23(3):E258–e63. doi:10.1532/hsf.2857
  • Li G, Jiang W, Zhang Y, et al. The outcome of pediatric patients undergoing congenital cardiac surgery under pulsatile cardiopulmonary bypass in different frequencies. Ther Clin Risk Manag. 2018;14:1553–1561. doi:10.2147/TCRM.S170642
  • Wang S, Kunselman AR, Clark JB, Ündar A. In vitro hemodynamic evaluation of a novel pulsatile extracorporeal life support system: impact of perfusion modes and circuit components on energy loss. Artif Organs. 2015;39(1):59–66. doi:10.1111/aor.12430
  • Fleck T, Benk C, Klemm R, et al. First serial in vivo results of mechanical circulatory support in children with a new diagonal pump. Eur J Cardiothorac Surg. 2013;44(5):828–835. doi:10.1093/ejcts/ezt427
  • Ostadal P, Mlcek M, Gorhan H, et al. Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock. PLoS One. 2018;13(4):e0196321. doi:10.1371/journal.pone.0196321
  • Percie Du Sert N, Hurst V, Ahluwalia A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. doi:10.1371/journal.pbio.3000410
  • Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. doi:10.1007/s00281-017-0639-8
  • Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12). doi:10.1084/jem.20201129.
  • Conti P, Caraffa A, Gallenga CE, et al. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy. J Biol Regul Homeost Agents. 2020;34(6).
  • Hong TH, Kuo SW, Hu FC, et al. Do interleukin-10 and superoxide ions predict outcomes of cardiac extracorporeal membrane oxygenation patients? Antioxid Redox Signal. 2014;20(1):60–68. doi:10.1089/ars.2013.5427
  • Risnes I, Wagner K, Ueland T, Mollnes T, Aukrust P, Svennevig J. Interleukin-6 may predict survival in extracorporeal membrane oxygenation treatment. Perfusion. 2008;23(3):173–178. doi:10.1177/0267659108097882
  • Cremers B, Link A, Werner C, et al. Pulsatile venoarterial perfusion using a novel synchronized cardiac assist device augments coronary artery blood flow during ventricular fibrillation. Artif Organs. 2015;39(1):77–82. doi:10.1111/aor.12413
  • Wang S, Izer JM, Clark JB, et al. In vivo hemodynamic performance evaluation of novel electrocardiogram-synchronized pulsatile and nonpulsatile extracorporeal life support systems in an adult swine model. Artif Organs. 2015;39(7):E90–E101. doi:10.1111/aor.12482
  • Wang S, Krawiec C, Patel S, et al. Laboratory evaluation of hemolysis and systemic inflammatory response in neonatal nonpulsatile and pulsatile extracorporeal life support systems. Artif Organs. 2015;39(9):774–781. doi:10.1111/aor.12466
  • Fujii Y, Akamatsu N, Yamasaki Y, et al. Development of a pulsatile flow-generating circulatory assist device (K-Beat) for use with veno-arterial extracorporeal membrane oxygenation in a Pig Model Study. Biology. 2020;9(6):121. doi:10.3390/biology9060121
  • Li G, Chen Z, Zhang Y, Wu Z, Zheng J. Effects of left ventricular assist device on heart failure patients: a bioinformatics analysis. Artif Organs. 2020;44(6):577–583. doi:10.1111/aor.13627