70
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Stable Cells with NF-κB-ZsGreen Fused Genes Created by TALEN Editing and Homology Directed Repair for Screening Anti-inflammation Drugs

ORCID Icon, & ORCID Icon
Pages 917-928 | Published online: 17 Mar 2021

References

  • Yang H, Wang HY, Shivalila CS, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154(6):1370–1379. doi:10.1016/j.cell.2013.08.022
  • Hockemeyer D, Wang HY, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–734. doi:10.1038/nbt.1927
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. P Natl Acad Sci USA. 1996;93:1156–1160. doi:10.1073/pnas.93.3.1156
  • Bibikova M, Beumer K, Trautman JK, et al. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300(5620):764. doi:10.1126/science.1079512
  • Moehle EA, Rock JM, Lee YL, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases (vol 104, pg 3055, 2007). P Natl Acad Sci USA. 2007;104:6090. doi:10.1073/pnas.0611478104
  • Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300(5620):763. doi:10.1126/science.1078395
  • Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–U476. doi:10.1534/genetics.110.120717
  • Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas Systems. Science. 2013;339(6121):819–823. doi:10.1126/science.1231143
  • Danner E, Bashir S, Yumlu S, et al. Control of gene editing by manipulation of DNA repair mechanisms. Mamm Genome. 2017;28(7–8):262–274. doi:10.1007/s00335-017-9688-5
  • Jasin M, Haber JE. The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair. 2016;44:6–16. doi:10.1016/j.dnarep.2016.05.001
  • Paix A, Schmidt H, Seydoux G. Cas9-assisted recombineering in C. elegans: genome editing using in vivo assembly of linear DNAs. Nucleic Acids Res. 2016;44(15):e128. doi:10.1093/nar/gkw502
  • Paix A, Folkmann A, Goldman DH, et al. Precision genome editing using synthesis-dependent repair of Cas9-induced DNA breaks. P Natl Acad Sci USA. 2017;114(50):E10745–E10754. doi:10.1073/pnas.1711979114
  • Ghosh S, May MJ, Kopp EB. NF-κB and rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225–260. doi:10.1146/annurev.immunol.16.1.225
  • Baldwin AS. The NF-κB and IκB proteins: new discoveries and insights. Annu Rev Immunol. 1996;14(1):649–683. doi:10.1146/annurev.immunol.14.1.649
  • Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25(6):280–288. doi:10.1016/j.it.2004.03.008
  • Biswas DK, Cruz AP, Gansberger E, et al. Epidermal growth factor-induced NF-κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. P Natl Acad Sci USA. 2000;97(15):8542–8547. doi:10.1073/pnas.97.15.8542
  • Lane DP, Midgley CA, Hupp TR, et al. On the Regulation of the P53 tumor-suppressor, and its role in the cellular-response to DNA-damage. Philos T Roy Soc B. 1995;347:83–87.
  • Tak PP, Firestein GS. NF-kappa B: a key role in inflammatory diseases. J Clin Invest. 2001;107:7–11. doi:10.1172/JCI11830
  • Chen XF, Kandasamy K, Srivastava RK. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor kappa B in tumor necrosis factor-related apoptosis-inducing ligand signaling. Cancer Res. 2003;63(5):1059–1066.
  • Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001;107(2):135–142. doi:10.1172/JCI11914
  • Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2(3):175–187. doi:10.1038/nrc746
  • Gupta SC, Sundaram C, Reuter S, et al. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Bba-Gene Regul Mech. 2010;1799:775–787.
  • Pierce JW, Schoenleber R, Jesmok G, et al. Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997;272(34):21096–21103. doi:10.1074/jbc.272.34.21096
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004). Cell. 2007;131:11–29.
  • Novak J, Olejnickova V, Tkacova N, et al. Mechanistic Role of MicroRNAs in coupling lipid metabolism and atherosclerosis. Adv Exp Med Biol. 2015;887:79–100.
  • Santulli G. MicroRNAs and Endothelial (Dys) Function. J Cell Physiol. 2016;231(8):1638–1644. doi:10.1002/jcp.25276
  • Zeuner MT, Vallance T, Vaiyapuri S, et al. Development and Characterisation of a Novel NF-κ B reporter cell line for investigation of neuroinflammation. Mediators Inflamm. 2017;2017:1–10. doi:10.1155/2017/6209865
  • Zhao M, Howard EW, Parris AB, et al. Alcohol promotes migration and invasion of triple-negative breast cancer cells through activation of p38 MAPK and JNK. Mol Carcinogen. 2017;56(3):849–862. doi:10.1002/mc.22538
  • Eskla KL, Porosk R, Reimets R, et al. Hypothermia augments stress response in mammalian cells. Free Radical Bio Med. 2018;121:157–168. doi:10.1016/j.freeradbiomed.2018.04.571
  • Badr CE, Niers JM, Tjon-Kon-Fat LA, et al. Real-Time Monitoring of NF-κB Activity in Cultured Cells and in Animal Models. Mol Imaging. 2009;8(5):278–290. doi:10.2310/7290.2009.00026
  • Lendermon EA, Coon TA, Bednash JS, et al. Azithromycin decreases NALP3 mRNA stability in monocytes to limit inflammasome-dependent inflammation. Resp Res. 2017;18.
  • Cen XH, Zhu CZ, Yang JJ, et al. TLR1/2 specific small-molecule agonist suppresses leukemia cancer cell growth by stimulating cytotoxic T Lymphocytes. Adv Sci. 2019;6(10):1802042. doi:10.1002/advs.201802042
  • Krabbe G, Minami SS, Etchegaray JI, et al. Microglial NF-κB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. P Natl Acad Sci USA. 2017;114(19):5029–5034. doi:10.1073/pnas.1700477114
  • Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 2013;12(1):86. doi:10.1186/1476-4598-12-86
  • Zhang S, Wang J, Wang J. One-Day TALEN assembly protocol and a dual-tagging system for genome editing. ACS Omega. 2020;5(31):19702–19714. doi:10.1021/acsomega.0c02396
  • Wang D, Tang H, Xu X, et al. Control the intracellular NF-κB activity by a sensor consisting of miRNA and decoy. Int J Biochem Cell Biol. 2018;95:43–52. doi:10.1016/j.biocel.2017.12.009
  • Bren GD, Solan NJ, Miyoshi H, et al. Transcription of the RelB gene is regulated by NF-κB. Oncogene. 2001;20(53):7722–7733. doi:10.1038/sj.onc.1204868
  • Hannink M, Temin HM. Structure and Autoregulation of the C-Rel promoter. Oncogene. 1990;5(12):1843–1850.
  • Capobianco AJ, Gilmore TD. Repression of the chicken C-rel promoter by vRel in chicken-embryo fibroblasts is not mediated through a consensus NF-κB Binding-Site. Oncogene. 1991;6:2203–2210.
  • Ten RM, Paya CV, Israel N, et al. The characterization of the promoter of the gene encoding the p50 subunit of NF-κB indicates that it participates in its own regulation. EMBO J. 1992;11(1):195–203. doi:10.1002/j.1460-2075.1992.tb05042.x
  • Lombardi L, Ciana P, Cappellini C, et al. Structural and functional-characterization of the promoter regions of the NFKB2 Gene. Nucleic Acids Res. 1995;23(12):2328–2336. doi:10.1093/nar/23.12.2328