79
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Acute Phase Responses Vary Between Children of HbAS and HbAA Genotypes During Plasmodium falciparum Infection

, , ORCID Icon, ORCID Icon, , , , , , , , & ORCID Icon show all
Pages 1415-1426 | Published online: 14 Apr 2021

References

  • Gillespie SH, Dow C, Raynes JG, Behrens RH, Chiodini PL, McAdam KP. Measurement of acute phase proteins for assessing severity of Plasmodium falciparum malaria. J Clin Pathol. 1991;44(3):228–231. doi:10.1136/jcp.44.3.228
  • Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett. 2005;157(3):175–188. doi:10.1016/j.toxlet.2005.03.004
  • Olivier M, Van Den Ham K, Shio MT, Kassa FA, Fougeray S. Malarial pigment hemozoin and the innate inflammatory response. Front Immunol. 2014;5:(FEB):25. doi:10.3389/fimmu.2014.00025
  • Ventura PDS, Carvalho CPF, Barros NMT, et al. Malaria infection promotes a selective expression of kinin receptors in murine liver. Malar J. 2019;18(1):213. doi:10.1186/s12936-019-2846-3
  • Viebig NK, Wulbrand U, Förster R, Andrews KT, Lanzer M, Knolle PA. Direct activation of human endothelial cells by Plasmodium falciparum-infected erythrocytes. Infect Immun. 2005;73(6):3271–3277. doi:10.1128/IAI.73.6.3271-3277.2005
  • Ademolue TW, Aniweh Y, Kusi KA, Awandare GA. Patterns of inflammatory responses and parasite tolerance vary with malaria transmission intensity. Malar J. 2017;16(1):145. doi:10.1186/s12936-017-1796-x
  • Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis. 2007;7(2):105–117. doi:10.1016/S1473-3099(07)70022-1
  • Hviid L, Kurtzhals JAL, Adabayeri V, et al. Perturbation and proinflammatory type activation of vδ1+ γδ t cells in african children with plasmodium falciparum malaria. Infect Immun. 2001;69(5):3190–3196. doi:10.1128/IAI.69.5.3190-3196.2001
  • Northrop-Clewes CA. Interpreting indicators of iron status during an acute phase response-lessons from malaria and human immunodeficiency virus. Ann Clin Biochem. 2008;45(1):18–32. doi:10.1258/acb.2007.007167
  • O’donnell A, Fowkes FJI, Allen SJ, et al. The acute phase response in children with mild and severe malaria in Papua New Guinea. Trans R Soc Trop Med Hyg. 2009;103(7):679–686. doi:10.1016/j.trstmh.2009.03.023
  • Charlie-Silva I, Klein A, Gomes JMM, et al. Acute-phase proteins during inflammatory reaction by bacterial infection: fish-model. Sci Rep. 2018. doi:10.1038/s41598-019-41312-z
  • Nai A, Lidonnici MR, Rausa M, et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015;125(7):1170–1179. doi:10.1182/blood-2014-08-596254
  • Verra F, Simpore J, Warimwe GM, et al. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria. PLoS One. 2007;2(10):10. doi:10.1371/journal.pone.0000978
  • Taylor SM, Parobek CM, Fairhurst RM. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(6):457–468. doi:10.1016/S1473-3099(12)70055-5
  • Modiano D, Bancone G, Ciminelli BM, et al. Haemoglobin S and haemoglobin C: “quick but costly” versus “slow but gratis” genetic adaptations to Plasmodium falciparum malaria. Hum Mol Genet. 2008;17(6):789–799. doi:10.1093/hmg/ddm350
  • Luzzatto L. Genes expressed in red cells could shape a malaria attack. Lancet Haematol. 2018;5(8):e322–e323. doi:10.1016/S2352-3026(18)30110-8
  • Suchdev PS, Williams AM, Mei Z, et al. Assessment of iron status in settings of inflammation: challenges and potential approaches. Am J Clin Nutr. 2017;106(Supplement 6):1626–1659. doi:10.3945/ajcn
  • Mockenhaupt’ FP, Rang’ B, Giinther’ M, et al. Anaemia in pregnant ghanaian women: importance of malaria, iron deficiency, and haemoglobinopathies. Vol 94; 2000. Available from: https://academic.oup.com/trstmh/article-abstract/94/5/477/1936858. Accessed June 13, 2020.
  • Villaverde C, Namazzi R, Shabani E, et al. Retinopathy-positive cerebral malaria is associated with greater inflammation, blood-brain barrier breakdown, and neuronal damage than retinopathy-negative cerebral malaria. J Pediatric Infect Dis Soc. 2019;2019:1–8. doi:10.1093/jpids/piz082
  • World Health Organization. Basic MALARIA MICROSCOPY Part 1. Learner’s Guide. 2nd ed. 2010.
  • Ademolue TW, Amodu OK, Awandare GA. Sickle cell trait is associated with controlled levels of haem and mild proinflammatory response during acute malaria infection. Clin Exp Immunol. 2017;188(2):283–292. doi:10.1111/cei.12936
  • Gruys E, Toussaint MJM, Niewold TA, Koopmans SJ. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci. 2005;6(11):1045–1056. doi:10.1631/jzus.2005.B1045
  • Archer NM, Petersen N, Clark MA, Buckee CO, Childs LM, Duraisingh MT. Resistance to Plasmodium falciparum in sickle cell trait erythrocytes is driven by oxygen-dependent growth inhibition. Proc Natl Acad Sci. 2018;115(28):7350–7355. doi:10.1073/pnas.1804388115
  • Cramer JP, Mockenhaupt FP, Ehrhardt S, et al. iNOS promoter variants and severe malaria in Ghanaian children. Trop Med Int Health. 2004;9(10):1074–1080. doi:10.1111/j.1365-3156.2004.01312.x
  • Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, Van Der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol. 2005;21(9):415–422. doi:10.1016/j.pt.2005.07.002
  • Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation. 2002;106(12):1439–1441. doi:10.1161/01.CIR.0000033116.22237.F9
  • Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: c-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106(8):913–919. doi:10.1161/01.CIR.0000029802.88087.5E
  • Brummett LM, Kanost MR, Gorman MJ. The immune properties of manduca sexta transferrin graphical abstract HHS public access author manuscript. Insect Biochem Mol Biol. 2017;81:1–9. doi:10.1016/j.ibmb.2016.12.006
  • Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 1999;13.
  • Sherman IW, Eda S, Winograd E. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect. 2003;5(10):897–909. doi:10.1016/S1286-4579(03)00162-X
  • Lou J, Gasche Y, Zheng L, et al. Differential reactivity of brain microvascular endothelial cells to TNF reflects the genetic susceptibility to cerebral malaria. Eur J Immunol. 1998;28(12):3989–4000. doi:10.1002/(sici)1521-4141(199812)28:12<3989::aid-immu3989>3.0.co;2-x
  • Kim H, Higgins S, Liles WC, Kain KC. Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol. 2011;18(3):177–185. doi:10.1097/MOH.0b013e328345a4cf
  • Hempel C, Boisen IM, Efunshile A, Kurtzhals JA, Staalsø T. An automated method for determining the cytoadhesion of Plasmodium falciparum-infected erythrocytes to immobilized cells. Malar J. 2015;14(1). doi:10.1186/s12936-015-0632-4
  • Namaste SM, Rohner F, Huang J, et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr. 2017;106:359–371. doi:10.3945/ajcn
  • Mackay CR. Chemokines: immunology’s high impact factors. Nat Immunol. 2001;2(2):95–101. doi:10.1038/84298