231
Views
23
CrossRef citations to date
0
Altmetric
Perspectives

N-Acetylcysteine as Adjuvant Therapy for COVID-19 – A Perspective on the Current State of the Evidence

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2993-3013 | Published online: 06 Jul 2021

References

  • Blumenthal D, Fowler EJ, Abrams M, Collins SR. Covid-19 — implications for the Health Care System. N Eng J Med. 2020;383(15):1483–1488. doi:10.1056/NEJMsb2021088
  • Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Eng J Med. 2020;383(18):1757–1766. doi:10.1056/NEJMcp2009249
  • Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N Eng J Med. 2020;382(13):1199–1207. doi:10.1056/NEJMoa2001316
  • Hassan AO, Case JB, Winkler ES, et al. A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell. 2020;182(3):744–753.e4. doi:10.1016/j.cell.2020.06.011
  • Sariol A, Perlman S. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity. 2020;53(2):248–263. doi:10.1016/j.immuni.2020.07.005
  • Gates B. Responding to Covid-19 — a Once-in-a-Century Pandemic? N Eng J Med. 2020;382(18):1677–1679. doi:10.1056/NEJMp2003762
  • Siemieniuk RA, Bartoszko JJ, Ge L, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980. doi:10.1136/bmj.m2980
  • Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM. SARS-CoV-2 and Coronavirus Disease 2019: what We Know So Far. Pathogens. 2020;9(3):231. doi:10.3390/pathogens9030231
  • Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. Lancet Diabetes Endocrinol. 2020;8(10):823–833. doi:10.1016/S2213-8587(20)30271-0
  • Słomka A, Kowalewski M, Żekanowska E. Coronavirus Disease 2019 (COVID-19): a Short Review on Hematological Manifestations. Pathogens. 2020;9(6):493. doi:10.3390/pathogens9060493
  • Gencer S, Lacy M, Atzler D, van der Vorst EPC, Döring Y, Weber C. Immunoinflammatory, Thrombohaemostatic, and Cardiovascular Mechanisms in COVID-19. Thromb Haemost. 2020;120(12):1629–1641. doi:10.1055/s-0040-1718735
  • Kalra RS, Tomar D, Meena AS, Kandimalla R. SARS-CoV-2, ACE2, and Hydroxychloroquine: cardiovascular Complications, Therapeutics, and Clinical Readouts in the Current Settings. Pathogens. 2020;9(7):546. doi:10.3390/pathogens9070546
  • Hewitt JA, Lutz C, Florence WC, et al. ACTIVating Resources for the COVID-19 Pandemic: in Vivo Models for Vaccines and Therapeutics. Cell Host Microbe. 2020;28(5):646–659. doi:10.1016/j.chom.2020.09.016
  • Grobler JA, Anderson AS, Fernandes P, et al. Accelerated Preclinical Paths to Support Rapid Development of COVID-19 Therapeutics. Cell Host Microbe. 2020;28(5):638–645. doi:10.1016/j.chom.2020.09.017
  • Pan H, Peto R, Henao-Restrepo AM, et al. Repurposed Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. N Engl J Med. 2020;384(6):497–511. doi:10.1056/NEJMoa2023184
  • Teoh SL, Lim YH, Lai NM, Lee SWH. Directly Acting Antivirals for COVID-19: where Do We Stand? Front Microbiol. 2020;11:1857. doi:10.3389/fmicb.2020.01857
  • Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Eng J Med. 2021;384(9):795-807. doi:10.1056/NEJMoa2031994
  • The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19. N Eng J Med. 2021;384(8):693-704. doi:10.1056/NEJMoa2021436
  • Chen P, Nirula A, Heller B, et al. SARS-CoV-2 Neutralizing Antibody LY-CoV555 in Outpatients with Covid-19. N Eng J Med. 2021;384(3):229-237. doi:10.1056/NEJMoa2029849
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Eng J Med. 2020;383(27):2603–2615. doi:10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Eng J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa2035389
  • Heath PT, Galiza EP, Baxter DN, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Eng J Med. 2021. doi:10.1056/NEJMoa2107659
  • Goepfert PA, Fu B, Chabanon A-L, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1-2, dose-ranging study. Lancet Infect Dis. 2021;S1473-3099(21)00147-X. doi:10.1016/S1473-3099(21)00147-X
  • Sadoff S, Gray G, Vandebosch A, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Eng J Med. 2021;384(23):2187-2201. doi:10.1056/NEJMoa2101544
  • Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397(10269):99–111. doi:10.1016/S0140-6736(20)32661-1
  • Landini G, Di Maggio T, Sergio F, Docquier J-D, Rossolini GM, Pallecchi L. Effect of High N-Acetylcysteine Concentrations on Antibiotic Activity against a Large Collection of Respiratory Pathogens. Antimicrob Agents Chemother. 2016;60(12):7513–7517. doi:10.1128/aac.01334-16
  • Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta. 2013;1830(8):4117–4129. doi:10.1016/j.bbagen.2013.04.016
  • Rodríguez-Beltrán J, Cabot G, Valencia EY, et al. N-Acetylcysteine Selectively Antagonizes the Activity of Imipenem in Pseudomonas aeruginosa by an OprD-Mediated Mechanism. Antimicrob Agents Chemother. 2015;59(6):3246–3251. doi:10.1128/aac.00017-15
  • Goswami M, Jawali N. Acetylcysteine-Mediated Modulation of Bacterial Antibiotic Susceptibility. Antimicrob Agents Chemother. 2010;54(8):3529–3530. doi:10.1128/aac.00710-10
  • Domenech M, García E. N-Acetyl-L-Cysteine and Cysteamine as New Strategies against Mixed Biofilms of Nonencapsulated Streptococcus pneumoniae and Nontypeable Haemophilus influenzae. Antimicrob Agents Chemother. 2017;61(2):e01992–16. doi:10.1128/aac.01992-16
  • Blasi F, Page C, Rossolini GM, et al. The effect of N-acetylcysteine on biofilms: Implications for the treatment of respiratory tract infections. Respir Med. 2016;117:190‒197. doi:10.1016/j.rmed.2016.06.015
  • Jorge-Aarón R-M, Rosa-Ester M-P. N-acetylcysteine as a potential treatment for COVID-19. Future Microbiol. 2020;15:959–962. doi:10.2217/fmb-2020-0074
  • Poe FL, Corn J. N-Acetylcysteine: a potential therapeutic agent for SARS-CoV-2. Med Hypotheses. 2020;143:109862. doi:10.1016/j.mehy.2020.109862
  • Der Kinderen DJ, Koten JW. Rapid response: N-acetylcysteine as a possible adjuvant in the treatment of SARS-CoV-2. BMJ. 2020;371:m3862. Available from: https://www.bmj.com/content/371/bmj.m3862/rr-8. Accessed May 21, 2021.
  • Aldini G, Altomare A, Baron G, et al. N-Acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52(7):751–762. doi:10.1080/10715762.2018.1468564
  • Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16(1):69. doi:10.1186/s12985-019-1182-0
  • Suhail S, Zajac J, Fossum C, et al. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: a Review. Protein J. 2020;39(6):644–656. doi:10.1007/s10930-020-09935-8
  • Fenouillet E, Barbouche R, Jones IM. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal. 2007;9(8):1009–1034. doi:10.1089/ars.2007.1639
  • Ryser HJ, Levy EM, Mandel R, DiSciullo GJ. Inhibition of human immunodeficiency virus infection by agents that interfere with thiol-disulfide interchange upon virus-receptor interaction. Proc Natl Acad Sci U S A. 1994;91(10):4559–4563. doi:10.1073/pnas.91.10.4559
  • Hati S, Bhattacharyya S. Impact of Thiol–Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin-Converting Enzyme 2 Receptor. ACS Omega. 2020;5(26):16292–16298. doi:10.1021/acsomega.0c02125
  • Ullian ME, Gelasco AK, Fitzgibbon WR, Beck CN. N-Acetylcysteine Decreases Angiotensin II Receptor Binding in Vascular Smooth Muscle Cells. J Am Soc Nephrol. 2005;16(8):2346–2353. doi:10.1681/asn.2004060458
  • Altomare A, Baron G, Brioschi M, et al. N-Acetyl-Cysteine Regenerates Albumin Cys34 by a Thiol-Disulfide Breaking Mechanism: an Explanation of Its Extracellular Antioxidant Activity. Antioxidants. 2020;9(5):367. doi:10.3390/antiox9050367
  • Peiró C, Moncada S. Substituting Angiotensin-(1-7) to Prevent Lung Damage in SARS-CoV-2 Infection? Circulation. 2020;141(21):1665–1666. doi:10.1161/CIRCULATIONAHA.120.047297
  • Fishbane S. N-Acetylcysteine in the Prevention of Contrast-Induced Nephropathy. Clin J Am Soc Nephrol. 2008;3(1):281–287. doi:10.2215/cjn.02590607
  • Yehualashet AS, Belachew TF. ACEIs and ARBs and Their Correlation with COVID-19: a Review. Infect Drug Resist. 2020;13:3217–3224. doi:10.2147/IDR.S264882
  • Mahmoud Abd El Hafiz A, Mohammed El Wakeel L, Mohammed El Hady H, Mourad AER. High dose N-acetyl cysteine improves inflammatory response and outcome in patients with COPD exacerbations. Egyptian J Chest Dis Tuberculosis. 2013;62(1):51‒57. doi:10.1016/j.ejcdt.2013.02.012
  • McCarty MF, DiNicolantonio JJ. Nutraceuticals have potential for boosting the type 1 interferon response to RNA viruses including influenza and coronavirus. Prog Cardiovasc Dis. 2020;63(3):383–385. doi:10.1016/j.pcad.2020.02.007
  • Lee JS, Shin E-C. The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol. 2020;20(10):585–586. doi:10.1038/s41577-020-00429-3
  • De Francesco EM, Vella V, Belfiore A. COVID-19 and Diabetes: the Importance of Controlling RAGE. Opinion. Front Endocrinol (Lausanne). 2020;11:526. doi:10.3389/fendo.2020.00526
  • Wetzels S, Wouters K, Schalkwijk CG, Vanmierlo T, Hendriks JJA. Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis. Int J Mol Sci. 2017;18(2):421. doi:10.3390/ijms18020421
  • Bourgonje AR, Offringa AK, van Eijk LE, et al. N-Acetylcysteine and Hydrogen Sulfide in Coronavirus Disease 2019. Antioxid Redox Signal. 2021. doi:10.1089/ars.2020.8247
  • Oka S, Kamata H, Kamata K, Yagisawa H, Hirata H. N-Acetylcysteine suppresses TNF-induced NF-κB activation through inhibition of IκB kinases. FEBS Lett. 2000;472(2):196–202. doi:10.1016/S0014-5793(00)01464-2
  • Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O. NF-κB Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Hypothesis and Theory. Front Immunol. 2020;11:598444. doi:10.3389/fimmu.2020.598444
  • Geiler J, Michaelis M, Naczk P, et al. N-acetyl-L-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus. Biochem Pharmacol. 2010;79(3):413–420. doi:10.1016/j.bcp.2009.08.025
  • Boon AC, Vos AP, Graus YM, Rimmelzwaan GF, Osterhaus AD. In vitro effect of bioactive compounds on influenza virus specific B- and T-cell responses. Scand J Immunol. 2002;55(1):24–32. doi:10.1046/j.1365-3083.2002.01014.x
  • Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-L-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol. 2011;82(5):548–555. doi:10.1016/j.bcp.2011.05.014
  • Wu H, Song W, Gao X, et al. Proteomics study of N-acetylcysteine response in H1N1-infected cells by using mass spectrometry. Rapid Commun Mass Spectrom. 2014;28(7):741–749. doi:10.1002/rcm.6840
  • Garigliany MMO, Desmecht DJ. N-acetylcysteine lacks universal inhibitory activity against influenza A viruses. J Negat Results Biomed. 2011;10:5. doi:10.1186/1477-5751-10-5
  • Mata M, Sarrion I, Armengot M, et al. Respiratory syncytial virus inhibits ciliagenesis in differentiated normal human bronchial epithelial cells: effectiveness of N-acetylcysteine. PLoS One. 2012;7(10):e48037–e48037. doi:10.1371/journal.pone.0048037
  • Carpenter LR, Moy JN, Roebuck KA. Respiratory syncytial virus and TNFalpha induction of chemokine gene expression involves differential activation of Rel A and NF-kappaB1. BMC Infect Dis. 2002;2(1):5. doi:10.1186/1471-2334-2-5
  • Ghezzi P, Ungheri D. Synergistic combination of N-acetylcysteine and ribavirin to protect from lethal influenza viral infection in a mouse model. Int J Immunopathol Pharmacol. 2004;17(1):99–102. doi:10.1177/039463200401700114
  • Ungheri D, Pisani C, Sanson G, et al. Protective effect of n-acetylcysteine in a model of influenza infection in mice. Int J Immunopathol Pharmacol. 2000;13(3):123–128.
  • Garozzo A, Tempera G, Ungheri D, Timpanaro R, Castro A. N-acetylcysteine synergizes with oseltamivir in protecting mice from lethal influenza infection. Int J Immunopathol Pharmacol. 2007;20(2):349–354. doi:10.1177/039463200702000215
  • Garigliany MM, Habyarimana A, Lambrecht B, et al. Influenza A strain-dependent pathogenesis in fatal H1N1 and H5N1 subtype infections of mice. Emerg Infect Dis. 2010;16(4):595–603. doi:10.3201/eid1604.091061
  • Zhang RH, Li CH, Wang CL, et al. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. Int Immunopharmacol. 2014;22(1):1–8. doi:10.1016/j.intimp.2014.06.013
  • Gowdy KM, Krantz QT, King C, et al. Role of oxidative stress on diesel-enhanced influenza infection in mice. Part Fibre Toxicol. 2010;7:34. doi:10.1186/1743-8977-7-34
  • De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. Eur Respir J. 1997;10(7):1535–1541. doi:10.1183/09031936.97.10071535
  • Zhang Q, Ju Y, Ma Y, Wang T. N-acetylcysteine improves oxidative stress and inflammatory response in patients with community acquired pneumonia: a randomized controlled trial. Medicine. 2018;97(45):e13087–e13087. doi:10.1097/MD.0000000000013087
  • Sharafkhah M, Abdolrazaghnejad A, Zarinfar N, Mohammadbeigi A, Massoudifar A, Abaszadeh S. Safety and efficacy of N-acetyl-cysteine for prophylaxis of ventilator-associated pneumonia: a randomized, double blind, placebo-controlled clinical trial. Med Gas Res. 2018;8(1):19–23. doi:10.4103/2045-9912.229599
  • Lai KY, Ng WY, Osburga Chan PK, Wong KF, Cheng F. High-dose N-acetylcysteine therapy for novel H1N1 influenza pneumonia. Ann Intern Med. 2010;152(10):687–688. doi:10.7326/0003-4819-152-10-201005180-00017
  • de Alencar JCG, Moreira CDL, Müller AD, et al. Double-blind, Randomized, Placebo-controlled Trial With N-acetylcysteine for Treatment of Severe Acute Respiratory Syndrome Caused by Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2021;72(11):e736-e741. doi:10.1093/cid/ciaa1443
  • Altay O, Yang H, Aydin M, et al. Combined metabolic cofactor supplementation accelerates recovery in mild-to-moderate COVID-19. medRxiv. 2020. doi:10.1101/2020.10.02.20202614
  • Puyo C, Kreig D, Saddi V, Ansari E, Prince O. Case Report: use of hydroxychloroquine and N-acetylcysteine for treatment of a COVID-19 patient [version 2; peer review: 2 not approved]. F1000Research. 2020;9. doi:10.12688/f1000research.23995.2
  • Liu Y, Wang M, Luo G, et al. Experience of N-acetylcysteine airway management in the successful treatment of one case of critical condition with COVID-19: a case report. Medicine. 2020;99(42):e22577–e22577. doi:10.1097/MD.0000000000022577
  • Ibrahim H, Perl A, Smith D, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020;219:108544. doi:10.1016/j.clim.2020.108544
  • Bhattacharya R, Ghosh R, Kulshrestha M, Chowdhury S, Mukherjee R, Ray I. Observational Study on Clinical Features, Treatment and Outcome of COVID 19 in a tertiary care Centre in India- a retrospective case series. medRxiv. 2020. doi:10.1101/2020.08.12.20170282
  • Hernández MD, Urrea J, Bascoy L. Evolution of COVID-19 patients treated with ImmunoFormulation, a combination of nutraceuticals to reduce symptomatology and improve prognosis: a multi-centred, retrospective cohort study. medRxiv. 2020. doi:10.1101/2020.12.11.20246561
  • Vardhana S, Wolchok J. Memorial Sloan Kettering Cancer Center. A study of N-acetylcysteine in patients with COVID-19 infection. Available from: https://clinicaltrials.gov/ct2/show/NCT04374461. NLM identifier: NCT04374461. Accessed December 15, 2020.
  • Lai-Becker M. Cambridge Health Alliance. Efficacy of N-Acetylcysteine (NAC) in preventing COVID-19 from progressing to severe disease. Available from: https://clinicaltrials.gov/ct2/show/NCT04419025. NLM identifier: NCT04419025. Accessed December 15, 2020.
  • Alamdari DH, Yarahmadi A. Mashhad University of Medical Sciences. Clinical application of methylene blue for treatment of COVID-19 patients (COVID-19). Available from: https://clinicaltrials.gov/ct2/show/NCT04370288. NLM identifier: NCT04370288. Accessed December 20, 2020.
  • Olagunju A. Obafemi Awolowo University. Antioxidant therapy for COVID-19 study (GSHSOD-COVID). Available from: https://clinicaltrials.gov/ct2/show/NCT04466657. NLM identifier: NCT04466657. Accessed December 20, 2020.
  • Alhawassi T, Alabdulbaqi B. King Saud University. Inflammatory regulation effect of NAC on COVID-19 treatment (INFECT-19). Available from: https://clinicaltrials.gov/ct2/show/NCT04455243. NLM identifier: NCT04455243. Accessed December 20, 2020.
  • O'Connell JJ, Martin J. Prisma Health-Upstate. Trial of famotidine & N-acetyl cysteine for outpatients with COVID-19. Available from: https://clinicaltrials.gov/ct2/show/NCT04545008. NLM identifier: NCT04545008. Accessed December 20, 2020.
  • Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: a report of 2 cases. Respiratory Medicine Case Rep. 2020;30:101063. doi:10.1016/j.rmcr.2020.101063
  • Whillier S, Raftos JE, Chapman B, Kuchel PW. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009;14(3):115–124. doi:10.1179/135100009x392539
  • Hadzic T, Li L, Cheng N, Walsh SA, Spitz DR, Knudson CM. The role of low molecular weight thiols in T lymphocyte proliferation and IL-2 secretion. J Immunol. 2005;175(12):7965–7972. doi:10.4049/jimmunol.175.12.7965
  • Mak TW, Grusdat M, Duncan GS, et al. Glutathione Primes T Cell Metabolism for Inflammation. Immunity. 2017;46(4):675–689. doi:10.1016/j.immuni.2017.03.019
  • Demedts M, Behr J, Buhl R, et al. High-Dose Acetylcysteine in Idiopathic Pulmonary Fibrosis. N Eng J Med. 2005;353(21):2229–2242. doi:10.1056/NEJMoa042976
  • Lai ZW, Hanczko R, Bonilla E, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012;64(9):2937–2946. doi:10.1002/art.34502
  • George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020;8(8):807–815. doi:10.1016/S2213-2600(20)30225-3
  • Takayama K. In Vitro and Animal Models for SARS-CoV-2 research. Trends Pharmacol Sci. 2020;41(8):513–517. doi:10.1016/j.tips.2020.05.005
  • Rubin EJ, Longo DL, Baden LR. Interleukin-6 Receptor Inhibition in Covid-19 — cooling the Inflammatory Soup. N Eng J Med. 2021;384(16):1564–1565. doi:10.1056/NEJMe2103108
  • McElvaney OJ, Curley GF, Rose-John S, McElvaney NG. Interleukin-6: obstacles to targeting a complex cytokine in critical illness. Lancet Respir Med. 2021;9(6):643-654. doi:10.1016/S2213-2600(21)00103-X
  • Jones SA, Hunter CA. Is IL-6 a key cytokine target for therapy in COVID-19? Nat Rev Immunol. 2021;21(6):337–339. doi:10.1038/s41577-021-00553-8
  • Garbers C, Heink S, Korn T, Rose-John S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat Rev Drug Discov. 2018;17(6):395–412. doi:10.1038/nrd.2018.45
  • Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18(12):773–789. doi:10.1038/s41577-018-0066-7
  • Angriman F, Ferreyro BL, Burry L, et al. Interleukin-6 receptor blockade in patients with COVID-19: placing clinical trials into context. Lancet Respir Med. 2021;9(6):655-664. doi:10.1016/S2213-2600(21)00139-9
  • Bateman DN, Dear JW, Thanacoody HKR, et al. Reduction of adverse effects from intravenous acetylcysteine treatment for paracetamol poisoning: a randomised controlled trial. Lancet. 2014;383(9918):697–704. doi:10.1016/S0140-6736(13)62062-0
  • LiverTox: Clinical and research information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Acetylcysteine. [Updated 2016 Nov 7]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK548401. Accessed June 15, 2021.
  • Tarbox JA, Bansal A, Peiris AN. Angioedema. JAMA. 2018;319(19):2054. doi:10.1001/jama.2018.4860
  • Bailey B, McGuigan MA. Management of anaphylactoid reactions to intravenous N-acetylcysteine. Ann Emerg Med. 1998;31(6):710–715. doi:10.1016/s0196-0644(98)70229-x
  • Daoud A, Dalhoff KP, Christensen MB, Bøgevig S, Petersen TS. Two-bag intravenous N-acetylcysteine, antihistamine pretreatment and high plasma paracetamol levels are associated with a lower incidence of anaphylactoid reactions to N-acetylcysteine. Clin Toxicol. 2020;58(7):698–704. doi:10.1080/15563650.2019.1675886
  • Schmidt LE, Dalhoff K. Risk factors in the development of adverse reactions to N-acetylcysteine in patients with paracetamol poisoning. Br J Clin Pharmacol. 2001;51(1):87–91. doi:10.1046/j.1365-2125.2001.01305.x
  • Williams TC, Burgers WA. SARS-CoV-2 evolution and vaccines: Cause for concern? Lancet Respir Med. 2021;9(4):333–335. doi:10.1016/S2213-2600(21)00075-8
  • Baric RS. Emergence of a Highly Fit SARS-CoV-2 Variant. N Eng J Med. 2020;383(27):2684–2686. doi:10.1056/NEJMcibr2032888
  • Tatu AL, Nadasdy T, Nwabudike LC. Chitin-lipid interactions and the potential relationship between Demodex and SARS-CoV-2. Dermatol Ther. 2021;34(3):e14935. doi:10.1111/dth.14935
  • Baglivo M, Baronio M, Natalini G, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020;91(1):161–164. doi:10.23750/abm.v91i1.9402
  • Kubiak K, Sielawa H, Chen W, Dzika E. Endosymbiosis and its significance in dermatology. J Eur Acad Dermatol Venereol. 2018;32(3):347–354. doi:10.1111/jdv.14721
  • Kircik LH, Del Rosso JQ, Layton AM, Schauber J. Over 25 Years of Clinical Experience With Ivermectin: an Overview of Safety for an Increasing Number of Indications. J Drugs Dermatol. 2016;15(3):325–332.
  • Schaller M, Gonser L, Belge K, et al. Dual anti-inflammatory and anti-parasitic action of topical ivermectin 1% in papulopustular rosacea. J Eur Acad Dermatol Venereol. 2017;31(11):1907–1911. doi:10.1111/jdv.14437
  • Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. doi:10.1016/j.antiviral.2020.104787
  • Chaccour C, Casellas A, Blanco-Di Matteo A, et al. The effect of early treatment with ivermectin on viral load, symptoms and humoral response in patients with non-severe COVID-19: a pilot, double-blind, placebo-controlled, randomized clinical trial. EClinicalMedicine. 2021;32:100720. doi:10.1016/j.eclinm.2020.100720
  • Sharmeen S, Skrtic M, Sukhai MA, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood. 2010;116(18):3593–3603. doi:10.1182/blood-2010-01-262675
  • López-Medina E, López P, Hurtado IC, et al. Effect of Ivermectin on Time to Resolution of Symptoms Among Adults With Mild COVID-19: a Randomized Clinical Trial. JAMA. 2021;325(14):1426–1435. doi:10.1001/jama.2021.3071
  • Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033–2040. doi:10.1182/blood.2020006000
  • Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–e440. doi:10.1016/S2352-3026(20)30145-9
  • Wool GD, Miller JL. The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology. 2021;88(1):15–27. doi:10.1159/000512007
  • Rostami M, Mansouritorghabeh H. D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol. 2020;13(11):1265–1275. doi:10.1080/17474086.2020.1831383
  • Seitz R, Lerch L, Immel A, Egbring R. D-dimer tests detect both plasmin and neutrophil elastase derived split products. Ann Clin Biochem. 1995;32(Pt 2):193–195. doi:10.1177/000456329503200211
  • Ishii T, Doi K, Okamoto K, et al. Neutrophil elastase contributes to acute lung injury induced by bilateral nephrectomy. Am J Pathol. 2010;177(4):1665–1673. doi:10.2353/ajpath.2010.090793
  • Singh P, Schwartz RA. Disseminated intravascular coagulation: a devastating systemic disorder of special concern with COVID-19. Dermatol Ther. 2020;33(6):e14053. doi:10.1111/dth.14053
  • Sadowska AM, Manuel-y-Keenoy B, Vertongen T, et al. Effect of N-acetylcysteine on neutrophil activation markers in healthy volunteers: in vivo and in vitro study. Pharmacol Res. 2006;53(3):216–225. doi:10.1016/j.phrs.2005.11.003
  • Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, Moss RB, Herzenberg LA. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A. 2006;103(12):4628–4633. doi:10.1073/pnas.0511304103
  • Rubio ML, Martin-Mosquero MC, Ortega M, Peces-Barba G. Oral N-Acetylcysteine Attenuates Elastase-Induced Pulmonary Emphysema in Rats. CHEST. 2004;125(4):1500–1506. doi:10.1378/chest.125.4.1500
  • Mursaleen L, Noble B, Chan SHY, Somavarapu S. N-Acetylcysteine Nanocarriers Protect against Oxidative Stress in a Cellular Model of Parkinson’s Disease. Antioxidants. 2020;9(7):600. doi:10.3390/antiox9070600
  • Lancheros R, Guerrero CA, Godoy-Silva RD. Improvement of N-Acetylcysteine Loaded in PLGA Nanoparticles by Nanoprecipitation Method. J Nanotechnol. 2018;2018:3620373. doi:10.1155/2018/3620373
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2020;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol. 2015;6:286. doi:10.3389/fphar.2015.00286
  • Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24(23):4283–4300. doi:10.1016/s0142-9612(03)00331-4
  • Aljihani SA, Alehaideb Z, Alarfaj RE, et al. Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi J Biol Sci. 2020;27(11):3065–3071. doi:10.1016/j.sjbs.2020.09.012
  • Karimi Zarchi AA, Faramarzi MA, Gilani K, Ghazi-Khansari M, Ghamami G, Amani A. N-acetylcysteine-loaded PLGA nanoparticles outperform conventional N-acetylcysteine in acute lung injuries in vivo. Int J Polymeric Mater Polymeric Biomaterials. 2017;66(9):443–454. doi:10.1080/00914037.2016.1236339
  • Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29(1):196–212. doi:10.1002/med.20140
  • Paranjpe M, Müller-Goymann CC. Nanoparticle-mediated pulmonary drug delivery: a review. Int J Mol Sci. 2014;15(4):5852–5873. doi:10.3390/ijms15045852
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–522. doi:10.1016/j.jconrel.2012.01.043
  • Maffezzoni E, Notargiacomo M, Agostini S, Gelardi M. Efficacy of a nasal spray containing N-acetylcysteine in hypertonic solution in the treatment of nonallergic chronic rhinitis with goblet cell metaplasia. J Biol Regul Homeost Agents. 2020;34(6):2345–2352. doi:10.23812/20-411-l
  • Macchi A, Terranova P, Castelnuovo P. Recurrent acute rhinosinusitis: a single blind clinical study of N-acetylcysteine vs ambroxol associated to corticosteroid therapy. Int J Immunopathol Pharmacol. 2012;25(1):207–217. doi:10.1177/039463201202500123
  • Cogo A, Chieffo A, Farinatti M, Ciaccia A. Efficacy of topical tuaminoheptane combined with N-acetyl-cysteine in reducing nasal resistance. A double-blind rhinomanometric study versus xylometazoline and placebo. Arzneimittelforschung. 1996;46(4):385–388.
  • Lane CJ, Redding DR, Gonzalez KA, Cardenas VJ, Boldogh I, Sur S. Topical N-acetyl cysteine (NAC) Reduces Late Phase Nasal Symptoms Following Ragweed Challenge. J Allergy Clin Immunol. 2009;123(2):S53. doi:10.1016/j.jaci.2008.12.170
  • Yilmaz B, Türkçü G, Şengül E, Gül A, Özkurt FE, Akdağ M. Efficacy of N-Acetylcysteine on Wound Healing of Nasal Mucosa. J Craniofac Surg. 2015;26(5):e422–6. doi:10.1097/scs.0000000000001880
  • Matsuyama T, Morita T, Horikiri Y, Yamahara H, Yoshino H. Enhancement of nasal absorption of large molecular weight compounds by combination of mucolytic agent and nonionic surfactant. J Control Release. 2006;110(2):347–352. doi:10.1016/j.jconrel.2005.09.047
  • Kim D, Kim YH, Kwon S. Enhanced nasal drug delivery efficiency by increasing mechanical loading using hypergravity. Sci Rep. 2018;8(1):168. doi:10.1038/s41598-017-18561-x