225
Views
13
CrossRef citations to date
0
Altmetric
Review

Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2091-2110 | Published online: 21 May 2021

References

  • Wintergerst ES, Maggini S, Hornig DH. Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab. 2007;51(4):301–323. doi:10.1159/000107673
  • Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take center stage. Nat Rev Immunol. 2008;8(9):685–698. doi:10.1038/nri2378
  • Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C, Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19: a review. Diabetes Metab Syndr. 2020;14(4):367–382. doi:10.1016/j.dsx.2020.04.015
  • Bhaskaram P. Immunobiology of mild micronutrient deficiencies. Br J Nutr. 2001;85(Suppl 2):S75–80. doi:10.1079/bjn2000297
  • Patel N, Penkert RR, Jones BG, et al. Baseline serum vitamin A and D levels determine benefit of oral vitamin A&D supplements to humoral immune responses following pediatric influenza vaccination. Viruses. 2019;11(10):907. doi:10.3390/v11100907
  • Gibson A, Edgar JD, Neville CE, et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am J Clin Nutr. 2012;96(6):1429–1436. doi:10.3945/ajcn.112.039057
  • Naik SR, Thakare VN, Joshi FP. Functional foods and herbs as potential immunoadjuvants and medicines in maintaining a healthy immune system: a commentary. J Complement Integer Med. 2010;7(1):Article 46. doi:10.2202/1553-3840.1441
  • Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Ann Intern Med. 2020;12(4):1181. doi:10.3390/nu12041181
  • Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med. 2005;142(1):37–46. doi:10.7326/0003-4819-142-1-200501040-00110
  • Wu JZ. P. Treatment strategies for reducing damages to lungs in patients with coronavirus and other infections. Preprints. 2020;2020020116.
  • World Health Organization. Food and Nutrition Tips During Self-Quarantine. Europe: Regional office; 2020. Available from: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/food-and-nutrition-tips-during-self-quarantine. Accessed January 12, 2021.
  • BDA. COVID-19/coronavirus - advice for the general public. 2021. Available from: https://www.bda.uk.com/resource/COVID-19-corona-virus-advice-for-the-general-public.html. Accessed January 12, 2021.
  • Curtis LJ, Bernier P, Jeejeebhoy K, et al. Costs of hospital malnutrition. Clin Nutr. 2017;36(5):1391–1396. doi:10.1016/j.clnu.2016.09.009
  • Rytter MJ, Kolte L, Briend A, Friis H, Christensen VB. The immune system in children with malnutrition–a systematic review. PLoS One. 2014;9(8):e105017. doi:10.1371/journal.pone.0105017
  • Reber E, Gomes F, Vasiloglou MF, Schuetz P, Stanga Z. Nutritional risk screening and assessment. J Clin Med. 2019;8(7):1065. doi:10.3390/jcm8071065
  • Ssentongo P, Ssentongo AE, Ba DM, et al. Global, regional and national epidemiology and prevalence of child stunting, wasting and underweight in low- and middle-income countries, 2006-2018. Sci Rep. 2021;11(1):5204. doi:10.1038/s41598-021-84302-w
  • Birgisdottir BE. Nutrition is key to global pandemic resilience. BMJ Nutr Prev Health. 2020;3(2):129–132. doi:10.1136/bmjnph-2020-000160
  • Morais AHA, Aquino JS, da Silva-maia JK, Vale SHL, Maciel BLL, Passos TS. Nutritional status, diet, and viral respiratory infections: perspectives for severe acute respiratory syndrome coronavirus 2. Br J Nutr. 2021;125(8):851–862. doi:10.1017/S0007114520003311
  • Malek A, Hashemi M, Anjomrooz M, Torabi P, Imani B. Malnutrition and medical nutrition therapy in hospitalized children: a case study of using national malnutrition screening tools in northeastern Iran. Afr Health Sci. 2019;19(1):1566–1573. doi:10.4314/ahs.v19i1.31
  • Volkert D, Beck AM, Cederholm T, et al. Management of malnutrition in older patients-current approaches, evidence and open questions. J Clin Med. 2019;8(7):974. doi:10.3390/jcm8070974
  • Headey D, Heidkamp R, Osendarp S, et al. Impacts of COVID-19 on childhood malnutrition and nutrition-related mortality. Lancet. 2020;396(10250):519–521. doi:10.1016/S0140-6736(20)31647-0
  • Handu D, Moloney L, Rozga M, Cheng F. Malnutrition care during the COVID-19 pandemic: considerations for registered dietitian nutritionists evidence analysis center. J Acad Nutr Diet. 2020. doi:10.1016/j.jand.2020.05.012
  • Roberton T, Carter ED, Chou VB, et al. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modeling study. Lancet Glob Health. 2020;8(7):e901–e908. doi:10.1016/S2214-109X(20)30229-1
  • Fore HH. A wake-up call: COVID-19 and its impact on children’s health and wellbeing. Lancet Glob Health. 2020;8(7):e861–e862. doi:10.1016/S2214-109X(20)30238-2
  • Akseer N, Kandru G, Keats EC, Bhutta ZA. COVID-19 pandemic and mitigation strategies: implications for maternal and child health and nutrition. Am J Clin Nutr. 2020;112(2):251–256. doi:10.1093/ajcn/nqaa171
  • Pérez-Escamilla R, Cunningham K, Moran VH. COVID-19 and maternal and child food and nutrition insecurity: a complex syndemic. Matern Child Nutr. 2020;16(3):e13036. doi:10.1111/mcn.13036
  • UNICEF. An additional 3.9 million children under 5 could suffer from wasting in South Asia this year due to COVID-19 – UNICEF. 2020. Available from: https://www.unicef.org/rosa/press-releases/additional-39-million-children-under-5-could-suffer-wasting-south-asia-year-due. Accessed April 1, 2021.
  • Brunton C, Arensberg MB, Drawert S, Badaracco C, Everett W, McCauley SM. Perspectives of registered dietitian nutritionists on adoption of telehealth for nutrition care during the COVID-19 pandemic. Healthcare (Basel). 2021;9(2):235. doi:10.3390/healthcare9020235
  • Rozga M, Handu D, Kelley K, et al. Telehealth during the COVID-19 pandemic: a cross-sectional survey of registered dietitian nutritionists. J Acad Nutr Diet. 2021;S2212-2672(21):00036. doi:10.1016/j.jand.2021.01.009
  • Hemilä H. Vitamin C and Infections. Nutrients. 2017;9(4):339. doi:10.3390/nu9040339
  • Bakaev VV, Duntau AP. Ascorbic acid in blood serum of patients with pulmonary tuberculosis and pneumonia. Int J Tuberc Lung Dis. 2004;8(2):263–266.
  • Lee SI, Lim CM, Koh Y, Huh JW, Lee JS, Hong SB. The effectiveness of vitamin C for patients with severe viral pneumonia in respiratory failure. J Thorac Dis. 2021;13(2):632–641. doi:10.21037/jtd-20-1306
  • Carr AC, Maggini S. Vitamin C, and immune function. Nutrients. 2017;9(11):1211. doi:10.3390/nu9111211
  • Hemilä H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J. 1997;16(9):836–837. doi:10.1097/00006454-199709000-00003
  • Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium, and omega-3 fatty acids: could they help against COVID-19? Maturitas. 2021;143:1–9. doi:10.1016/j.maturitas.2020.08.003
  • Name JJ, Souza ACR, Vasconcelos AR, Prado PS, Pereira CPM. Zinc, Vitamin D and Vitamin C: perspectives for COVID-19 with a focus on physical tissue barrier integrity. Front Nutr. 2020;7:606398. doi:10.3389/fnut.2020.606398
  • Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020;12:100190. doi:10.1016/j.phanu.2020.100190
  • Holford P, Carr AC, Jovic TH, et al. Vitamin C-an adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients. 2020;12(12):3760. doi:10.3390/nu12123760
  • Marik PE. Vitamin C: an essential “stress hormone” during sepsis. J Thorac Dis. 2020;12(Suppl1):S84–S88. doi:10.21037/jtd.2019.12.64
  • Marik PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther. 2018;189:63–70. doi:10.1016/j.pharmthera.2018.04.007
  • Colunga Biancatelli RML, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther. 2020;18(2):99–101. doi:10.1080/14787210.2020.1706483
  • Bozonet SM, Carr AC, Pullar JM, Vissers MC. Enhanced human neutrophil vitamin C status, chemotaxis, and oxidant generation following dietary supplementation with vitamin C-rich SunGold kiwifruit. Nutrients. 2015;7(4):2574–2588. doi:10.3390/nu7042574
  • Kim Y, Kim H, Bae S, et al. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of Influenza a Virus (H3N2) infection. Immune Netw. 2013;13(2):70–74. doi:10.4110/in.2013.13.2.70
  • Uozaki M, Ikeda K, Tsujimoto K, et al. Antiviral effects of dehydroascorbic acid. Exp Ther Med. 2010;1(6):983–986. doi:10.3892/etm.2010.139
  • Kim H, Jang M, Kim Y, et al. Red ginseng and vitamin C increase immune cell activity and decrease lung inflammation induced by influenza A virus/H1N1 infection. J Pharm Pharmacol. 2016;68(3):406–420. doi:10.1111/jphp.12529
  • Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006;50(2):85–94. doi:10.1159/000090495
  • van Gorkom GNY, Klein Wolterink RGJ, Van Elssen CHMJ, Wieten L, Germeraad WTV, Bos GMJ. Influence of Vitamin C on lymphocytes: an overview. Antioxidants (Basel). 2018;7(3):41. doi:10.3390/antiox7030041
  • Nualart FJ, Rivas CI, Montecinos VP, et al. Recycling of vitamin C by a bystander effect. J Biol Chem. 2003;278(12):10128–10133. doi:10.1074/jbc.M210686200
  • Bitetto D, Bortolotti N, Falleti E, et al. Vitamin A deficiency is associated with hepatitis C virus chronic infection and with unresponsiveness to interferon-based antiviral therapy. Hepatology. 2013;57(3):925–933. doi:10.1002/hep.26186
  • Hall JA, Grainger JR, Spencer SP, Belkaid Y. The role of retinoic acid in tolerance and immunity. Immunity. 2011;35(1):13–22. doi:10.1016/j.immuni.2011.07.002
  • Field CJ, Johnson IR, Schley PD. Nutrients and their role in host resistance to infection. J Leukoc Biol. 2002;71(1):16–32.
  • Mora JR. Homing imprinting and immunomodulation in the gut: role of dendritic cells and retinoids. Inflamm Bowel Dis. 2008;14(2):275–289. doi:10.1002/ibd.20280
  • Cunningham-Rundles S, Ahrn S, Abuav-Nussbaum R, Dnistrian A. Development of immunocompetence: role of micronutrients and microorganisms. Nutr Rev. 2002;60(5 Pt 2):S68–72. doi:10.1301/00296640260130777
  • Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of Vitamin A in the immune system. J Clin Med. 2018;7(9):258. doi:10.3390/jcm7090258
  • Oliveira LM, Teixeira FME, Sato MN. Impact of retinoic acid on immune cells and inflammatory diseases. Mediators Inflamm. 2018;2018:3067126. doi:10.1155/2018/3067126
  • Iyer N, Grizotte-Lake M, Duncan K, et al. Epithelium intrinsic vitamin A signaling coordinates pathogen clearance in the gut via IL-18. PLoS Pathog. 2020;16(4):e1008360. doi:10.1371/journal.ppat.1008360
  • National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk. Washington (DC): National Academies Press (US); 1989. Available from:https://www.ncbi.nlm.nih.gov/books/NBK218749/. Accessed April 3, 2021.
  • Green AS, Fascetti AJ. Meeting the Vitamin A requirement: the efficacy and importance of β-Carotene in animal species. ScientificWorldJournal. 2016;2016:7393620. doi:10.1155/2016/7393620
  • McCullough FS, Northrop-Clewes CA, Thurnham DI. The effect of vitamin A on epithelial integrity. Proc Nutr Soc. 1999;58(2):289–293. doi:10.1017/s0029665199000403
  • Raiten DJ, Sakr Ashour FA, Ross AC, et al. Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE). J Nutr. 2015;145(5):1039S–1108S. doi:10.3945/jn.114.194571
  • Surman SL, Penkert RR, Sealy RE, et al. Consequences of vitamin A deficiency: immunoglobulin dysregulation, squamous cell metaplasia, infectious disease, and death. Int J Mol Sci. 2020;21(15):5570. doi:10.3390/ijms21155570
  • Semba RD. Vitamin A and immunity to viral, bacterial, and protozoan infections. Proc Nutr Soc. 1999;58(3):719–727. doi:10.1017/s0029665199000944
  • Villamor E, Mbise R, Spiegelman D, et al. Vitamin A supplements ameliorate the adverse effect of HIV-1, malaria, and diarrheal infections on child growth. Pediatrics. 2002;109(1):E6. doi:10.1542/peds.109.1
  • Budhwar S, Sethi K, Chakraborty M, Rapid Advice A. Guideline for the prevention of novel coronavirus through nutritional intervention. Curr Nutr Rep. 2020;9(3):119–128. doi:10.1007/s13668-020-00325-1
  • Irlam JH, Siegfried N, Visser ME, Rollins NC. Micronutrient supplementation for children with HIV infection. Cochrane Database Syst Rev. 2013;(10):CD010666. doi:10.1002/14651858.CD010666
  • Jee J, Hoet AE, Azevedo MP, et al. Effects of dietary vitamin A content on antibody responses of feedlot calves inoculated intramuscularly with an inactivated bovine coronavirus vaccine. Am J Vet Res. 2013;74(10):1353–1362. doi:10.2460/ajvr.74.10.1353
  • Institute of Medicine (US) Committee on Military Nutrition Research. Military Strategies for Sustainment of Nutrition and Immune Function in the Field. Washington (DC): National Academies Press (US); 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK230968/. Accessed April 3, 2021.
  • Kańtoch M, Litwińska B, Szkoda M, Siennicka J. Znaczenie niedoboru witaminy A dla patologii i immunologii zakazeń wirusowych [Importance of vitamin A deficiency in pathology and immunology of viral infections]. Rocz Panstw Zakl Hig. 2002;53(4):385–392.
  • Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. doi:10.1371/journal.pmed.0030343
  • Sa Ribero M, Jouvenet N, Dreux M, Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020;16(7):e1008737. doi:10.1371/journal.ppat.1008737
  • Lokugamage KG, Hage A, de Vries M, et al. Type I interferon susceptibility distinguishes SARS-CoV-2 from SARS-CoV. J Virol. 2020;94(23):e01410–20. doi:10.1128/JVI.01410-20
  • Chelstowska S, Widjaja-Adhi MA, Silvaroli JA, Golczak M. Molecular Basis for Vitamin an Uptake and Storage in Vertebrates. Nutrients. 2016;8(11):676. doi:10.3390/nu8110676
  • Trasino SE. A role for retinoids in the treatment of COVID-19?. Clin Exp Pharmacol Physiol 2020;47(10):1765–1767. doi:10.1111/1440-1681.13354
  • Gudas LJ. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim Biophys Acta. 2012;1821(1):213–221. doi:10.1016/j.bbalip.2011.08.002
  • Rusu A, Tanase C, Pascu GA, Todoran N. Recent advances regarding the therapeutic potential of adapalene. Pharmaceuticals (Basel). 2020;13(9):217. doi:10.3390/ph13090217
  • Midha IK, Kumar N, Kumar A, Madan T. Mega-doses of retinol: a possible immunomodulation in Covid-19 illness in resource-limited settings. Rev Med Virol. 2020;e2204. doi:10.1002/rmv.2204
  • Jovic TH, Ali SR, Ibrahim N, et al. Could Vitamins Help in the Fight Against COVID-19? Nutrients. 2020;12(9):2550. doi:10.3390/nu12092550
  • Li R, Wu K, Li Y, et al. Revealing the targets and mechanisms of vitamin A in the treatment of COVID-19. Aging (Albany NY). 2020;12(15):15784–15796. doi:10.18632/aging.103888
  • Gröber U, Holick MF. The coronavirus disease (COVID-19) - A supportive approach with selected micronutrients. Int J Vitam Nutr Res. 2021;1–22. doi:10.1024/0300-9831/a000693
  • Al-Sumiadai MM, Ghazzay H, Al-Dulaimy WZS. Therapeutic effect of Vitamin A on severe COVID-19 patients. Eurasia J Biosci. 2020;14:7347–7350. doi:10.31838/SRP.2021.1.33
  • Michienzi SM, Badowski ME. Can vitamins and/or supplements provide hope against coronavirus? Drugs Context. 2020;9:2020. doi:10.7573/dic.2020-5-7
  • Fiorino S, Gallo C, Zippi M, et al. Cytokine storm in aged people with CoV-2: possible role of vitamins as therapy or preventive strategy. Aging Clin Exp Res. 2020;32(10):2115–2131. doi:10.1007/s40520-020-01669-y
  • Stephensen CB, Lietz G.Vitamin A in resistance to and recovery from infection: relevance to SARS-CoV2. Br J Nutr. 2021;1–10. doi:10.1017/S0007114521000246
  • D’Souza RM, D’Souza R. Vitamin A for preventing secondary infections in children with measles–a systematic review. J Trop Pediatr. 2002;48(2):72–77. doi:10.1093/tropej/48.2.72.84
  • McGill JL, Kelly SM, Guerra-Maupome M, et al. Vitamin A deficiency impairs the immune response to intranasal vaccination and RSV infection in neonatal calves. Sci Rep. 2019;9(1):15157. doi:10.1038/s41598-019-51684-x
  • Timoneda J, Rodríguez-Fernández L, Zaragozá R, et al. Vitamin A deficiency and the lung. Nutrients. 2018;10(9):1132. doi:10.3390/nu10091132
  • Biesalski HK, Nohr D. Importance of vitamin-A for lung function and development. Mol Aspects Med. 2003;24(6):431–440. doi:10.1016/s0098-2997(03)00039-6
  • Sarohan AR. COVID-19: endogenous retinoic acid theory and retinoic acid depletion syndrome. Med Hypotheses. 2020;144:110250. doi:10.1016/j.mehy.2020.110250
  • Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: a review. Trends Food Sci Technol. 2021;110:66–77. doi:10.1016/j.tifs.2021.01.069
  • Gombart AF. The vitamin D-antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4(9):1151–1165. doi:10.2217/fmb.09.87
  • Panfili FM, Roversi M, D’Argenio P, Rossi P, Cappa M, Fintini D. Possible role of vitamin D in COVID-19 infection in pediatric population. J Endocrinol Invest. 2021;44(1):27–35. doi:10.1007/s40618-020-01327-0
  • Charoenngam N, Shirvani A, Kalajian TA, Song A, Holick MF. The effect of various doses of oral Vitamin D3 supplementation on gut microbiota in healthy adults: a randomized, double-blinded, dose-response study. Anticancer Res. 2020;40(1):551–556. doi:10.21873/anticanres.13984
  • Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50–60. doi:10.4065/mcp.2010.0567
  • Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res. 2020;32(7):1195–1198. doi:10.1007/s40520-020-01570-8
  • Biesalski HK. Vitamin D deficiency and co-morbidities in COVID-19 patients – a fatal relationship? NFS Journal. 2020;20:10–21. doi:10.1016/j.nfs.2020.06.001
  • Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi:10.1136/bmj.i6583
  • Lips P, Cashman KD, Lamberg-Allardt C, et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur J Endocrinol. 2019;180(4):P23–P54. doi:10.1530/EJE-18-0736
  • Taylor CL, Thomas PR, Aloia JF, Millard PS, Rosen CJ. Questions about Vitamin D for primary care practice: input from an NIH conference. Am J Med. 128(11):1167–1170. doi:10.1016/j.amjmed.2015.05.025
  • Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80(6Suppl):1710S–6S. doi:10.1093/ajcn/80.6.1710S
  • Martineau AR, Nanzer AM, Satkunam KR, et al. Influence of a single oral dose of vitamin D (2) on serum 25-hydroxyvitamin D concentrations in tuberculosis patients. Int J Tuberc Lung Dis. 2009;13(1):119–125.
  • Ebadi M, Montano-Loza AJ. Perspective: improving vitamin D status in the management of COVID-19. Eur J Clin Nutr. 2020;74(6):856–859. doi:10.1038/s41430-020-0661-0
  • Kimball SM, Mirhosseini N, Holick MF. Evaluation of vitamin D3 intakes up to 15,000 international units/day and serum 25-hydroxyvitamin D concentrations up to 300 nmol/L on calcium metabolism in a community setting. Dermato-Endocrinology. 2017;9(1):e1300213. doi:10.1080/19381980.2017.1300213
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069.
  • CIDRAP - Center for Infectious Disease Research and Policy. COVID-19 Sickens Over 1,700 Health Workers in China, Killing 6. Office of the Vice President for Research. Minneapolis, MN: University of Minnesota; 2020. Available athttps://www.cidrap.umn.edu/news-perspective/2020/02/covid-19-sickens-over-1700-health-workers-china-killing-6. Accessed on April 4, 2021].
  • Bandyopadhyay S, Baticulon RE, Kadhum M, et al. Infection and mortality of healthcare workers worldwide from COVID-19: a systematic review. BMJ Glob Health. 2020;5(12):e003097. doi:10.1136/bmjgh-2020-003097
  • Kincaid E. One Year into the Pandemic, More Than 3000 Healthcare Workers Have Died of COVID-19. Medscape. Editor’s note: find the latest COVID-19 news and guidance in Medscape’s Coronavirus Resource Center. 2021. Available from: https://www.medscape.com/viewarticle/947304#:~:text=One%20Year%20Into%20the%20Pandemic,Have%20Died%20of%20COVID%2D19&text=Editor’s%20note%3A%20Find%20the%20latest,in%20Medscape’s%20Coronavirus%20Resource%20Center. Accessed April 2, 2021.
  • Melimopoulos E At least 17,000 health workers have died from COVID: amnesty. Aljazeera Media Network. 2021. Available from: https://www.aljazeera.com/news/2021/3/5/at-least-17000-health-workers-have-died-from-covid-amnesty. Accessed April 2, 2021.
  • Quraishi SA, Bittner EA, Blum L, Hutter MM, Camargo CA Jr. Association between preoperative 25-hydroxyvitamin D level and hospital-acquired infections following Roux-en-Y gastric bypass surgery. JAMA Surg. 2014;149(2):112–118. doi:10.1001/jamasurg.2013.3176
  • Laviano E, Sanchez Rubio M, González-Nicolás MT, et al. Association between preoperative levels of 25-hydroxyvitamin D and hospital-acquired infections after hepatobiliary surgery: a prospective study in a third-level hospital. PLoS One. 2020;15(3):e0230336. doi:10.1371/journal.pone.0230336
  • Quraishi SA, Litonjua AA, Moromizato T, et al. Association between prehospital vitamin D status and hospital-acquired bloodstream infections. Am J Clin Nutr. 2013;98(4):952–959. doi:10.3945/ajcn.113.058909
  • Amrein K, Litonjua AA, Moromizato T, et al. Increases in pre-hospitalization serum 25(OH)D concentrations are associated with improved 30-day mortality after hospital admission: a cohort study. Clin Nutr. 2016;35(2):514–521. doi:10.1016/j.clnu.2015.03.020
  • Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12(4):988. doi:10.3390/nu12040988
  • Grant WB, Al Anouti F, Moukayed M. Targeted 25-hydroxyvitamin D concentration measurements and vitamin D3 supplementation can have important patient and public health benefits. Eur J Clin Nutr. 2020;74(3):366–376. doi:10.1038/s41430-020-0564-0
  • Gunville CF, Mourani PM, Ginde AA. The role of vitamin D in prevention and treatment of infection. Inflamm Allergy Drug Targets. 2013;12(4):239–245. doi:10.2174/18715281113129990046
  • Baqi HR, Farag HAM, El Bilbeisi AHH, Askandar RH, El Afifi AM. Oxidative stress and its association with COVID-19: a narrative review. Kurdistan J Appl Res. 2020;97–105. doi:10.24017/covid.11
  • Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384–387. doi:10.1016/j.arcmed.2020.04.019
  • Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M. The role and therapeutic potential of NF-Kappa-B pathway in severe COVID-19 patients. Inflammopharmacology. 2021;29(1):91–100. doi:10.1007/s10787-020-00773-9
  • Al-Lami RA, Urban RJ, Volpi E, Algburi AMA, Baillargeon J. Sex hormones and novel corona virus infectious disease (COVID-19). Mayo Clin Proc. 2020;95(8):1710–1714. doi:10.1016/j.mayocp.2020.05.013
  • de Las Heras N, Martín Giménez VM, Ferder L, Manucha W, Lahera V. Implications of oxidative stress and potential role of mitochondrial dysfunction in COVID-19: therapeutic effects of Vitamin D. Antioxidants (Basel). 2020;9(9):897. doi:10.3390/antiox9090897
  • Kozlov EM, Ivanova E, Grechko AV, Wu WK, Starodubova AV, Orekhov AN. Involvement of oxidative stress and the innate immune system in SARS-CoV-2 infection. Diseases. 2021;9(1):17. doi:10.3390/diseases9010017
  • Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi:10.1016/S2213-2600(20)30076-X
  • Di Vincenzo A, Tana C, El Hadi H, Pagano C, Vettor R, Rossato M. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: clinical implications for Vitamin E supplementation in diabetic kidney disease. Int J Mol Sci. 2019;20(20):5101. doi:10.3390/ijms20205101
  • Freedman JE, Keaney JF Jr. Vitamin E inhibition of platelet aggregation is independent of antioxidant activity. J Nutr. 2001;131(2):374S–7S. doi:10.1093/jn/131.2.374S
  • Ntyonga-Pono MP. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment? Pan Afr Med J. 2020;35(Suppl 2):12. doi:10.11604/pamj.2020.35.2.22877
  • Wu D, Lewis ED, Pae M, Meydani SN. Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. 2019;9:3160. doi:10.3389/fimmu.2018.03160
  • Coquette A, Vray B, Vanderpas J. Role of vitamin E in the protection of the resident macrophage membrane against oxidative damage. Arch Int Physiol Biochim. 1986;94(5):S29–34.
  • Zhai T, Li S, Hu W, Li D, Leng S. Potential micronutrients and phytochemicals against the pathogenesis of chronic obstructive pulmonary disease and lung cancer. Nutrients. 2018;10(7):813. doi:10.3390/nu10070813
  • Lee CY, Man-Fan Wan J. Vitamin E supplementation improves cell-mediated immunity and oxidative stress of Asian men and women. J Nutr. 2000;130(12):2932–2937. doi:10.1093/jn/130.12.2932
  • Bivona JJ 3rd, Patel S, Vajdy M. Induction of cellular and molecular Immunomodulatory pathways by vitamin E and vitamin C. Expert Opin Biol Ther. 2017;17(12):1539–1551. doi:10.1080/14712598.2017.1375096
  • Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants, and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–126. doi:10.4103/0973-7847.70902
  • Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15(1):71. doi:10.1186/s12937-016-0186-5
  • Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: an overview on heterocyclic advances and medicinal prospects. Eur J Med Chem. 2020;204:112607. doi:10.1016/j.ejmech.2020.112607
  • Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses. 2020;143:110102. doi:10.1016/j.mehy.2020.110102
  • Niki E. Evidence for beneficial effects of vitamin E. Korean J Intern Med. 2015;30(5):571–579. doi:10.3904/kjim.2015.30.5.571
  • Traber MG, Atkinson J. Vitamin E, antioxidant, and nothing more. Free Radic Biol Med. 2007;43(1):4–15. doi:10.1016/j.freeradbiomed.2007.03.024
  • Li Y, Zhou W, Yang L, You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 2020;157:104833. doi:10.1016/j.phrs.2020.104833
  • Chaplin DD. Overview of the immune response. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S3–S23. doi:10.1016/j.jaci.2009.12.980
  • Cronkite DA, Strutt TM. The regulation of inflammation by innate and adaptive lymphocytes. J Immunol Res. 2018;2018:1467538. doi:10.1155/2018/1467538
  • Janeway CA Jr, Travers P, Walport M, et al. Immunobiology: The Immune System in Health and Disease. 5th ed. New York: Garland Science; 2001. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27090/. Accessed April 4, 2021.
  • de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523–534. doi:10.1038/nrmicro.2016.81
  • Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi:10.1016/S0140-6736(20)30628-0
  • Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi:10.1016/j.jinf.2020.03.037
  • Moriguchi S, Vitamin MM. E and immunity. Vitam Horm. 2000;59:305–336. doi:10.1016/s0083-6729(00)59011-6
  • Zabetakis I, Lordan R, Norton C, Tsoupras A. COVID-19: the inflammation link and the role of nutrition in potential mitigation. Nutrients. 2020;12(5):1466. doi:10.3390/nu12051466
  • Tanaka J, Fujiwara H, Torisu M. Vitamin E and immune response. I. Enhancement of Helper T Cell Activity by Dietary Supplementation of Vitamin E in Mice. Immunology. 1979;38(4):727–734.
  • Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB Life. 2019;71(4):487–494. doi:10.1002/iub.1976
  • Lee GY, Han SN. The role of Vitamin E in immunity. Nutrients. 2018;10(11):1614. doi:10.3390/nu10111614
  • Subedi L, Tchen S, Gaire BP, Hu B, Hu K. Adjunctive nutraceutical therapies for COVID-19. Int J Mol Sci. 2021;22(4):1963. doi:10.3390/ijms22041963
  • Bae M, Kim H. Mini-review on the roles of vitamin C, vitamin D, and selenium in the immune system against COVID-19. Molecules. 2020;25(22):5346. doi:10.3390/molecules25225346
  • Hamulka J, Jeruszka-Bielak M, Górnicka M, Drywień ME, Zielinska-Pukos MA. Dietary Supplements during COVID-19 outbreak. Results of Google Trends analysis supported by PLifeCOVID-19 online studies. Nutrients. 2020;13(1):54. doi:10.3390/nu13010054
  • Center for Disease Control and Prevention. Older Adults. At Greater Risk of Requiring Hospitalization or Dying if Diagnosed with COVID-19. National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. 2021. Available from: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/older-adults.html#. Accessed April 4, 2021.
  • Allotey J, Stallings E, Bonet M, et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ. 2020;370:m3320. doi:10.1136/bmj.m3320
  • Hu YJ, Wake M, Saffery R. Clarifying the sweeping consequences of COVID-19 in pregnant women, newborns, and children with existing cohorts. JAMA Pediatr. 2021;175(2):117–118. doi:10.1001/jamapediatrics.2020.2395
  • Liu H, Wang LL, Zhao SJ, Kwak-Kim J, Mor G, Liao AH. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol. 2020;139:103122. doi:10.1016/j.jri.2020.103122
  • Buekens P, Alger J, Bréart G, Cafferata ML, Harville E, Tomasso G. A call for action for COVID-19 surveillance and research during pregnancy. Lancet Glob Health. 2020;8(7):e877–e878. doi:10.1016/S2214-109X(20)30206-0
  • Yee J, Kim W, Han JM, et al. Clinical manifestations and perinatal outcomes of pregnant women with COVID-19: a systematic review and meta-analysis. Sci Rep. 2020;10(1):18126. doi:10.1038/s41598-020-75096-4
  • Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY). 2020;12(10):9959–9981. doi:10.18632/aging.103344
  • Khan M, Khan H, Khan S, Nawaz M. Epidemiological and clinical characteristics of coronavirus disease (COVID-19) cases at a screening clinic during the early outbreak period: a single-center study. J Med Microbiol. 2020;69(8):1114–1123. doi:10.1099/jmm.0.001231
  • Genebat M, Tarancón-Díez L, de Pablo-bernal R, Calderón A, Muñoz-Fernández MÁ, Leal M. Coronavirus Disease (COVID-19): a perspective from immunosenescence. Aging Dis. 2021;12(1):3–6. doi:10.14336/AD.2020.0831
  • Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol. 2014;30(1):16–22. doi:10.3109/09513590.2013.852531
  • Meydani SN, Lewis ED, Wu D. Perspective: should Vitamin E recommendations for older adults be increased? Adv Nutr. 2018;9(5):533–543. doi:10.1093/advances/nmy035
  • Wu D, Meydani SN. Age-associated changes in immune function: impact of vitamin E intervention and the underlying mechanisms. Endocr Metab Immune Disord Drug Targets. 2014;14(4):283–289. doi:10.2174/1871530314666140922143950
  • Meydani SN, Han SN, Wu D. Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol Rev. 2005;205(1):269–284. doi:10.1111/j.0105-2896.2005.00274.x
  • Morelli MB, Gambardella J, Castellanos V, Trimarco V, Santulli G. Vitamin C and Cardiovascular Disease: an Update. Antioxidants (Basel). 2020;9(12):1227. doi:10.3390/antiox9121227
  • Liu F, Zhu Y, Zhang J, Li Y, Peng Z. Intravenous high-dose vitamin C for the treatment of severe COVID-19: study protocol for a multicentre randomized controlled trial. BMJ Open. 2020;10(7):e039519. doi:10.1136/bmjopen-2020-039519
  • Beigmohammadi MT, Bitarafan S, Hoseindokht A, et al. Impact of vitamins A, B, C, D, and E supplementation on improvement and mortality rate in ICU patients with coronavirus-19: a structured summary of a study protocol for a randomized controlled trial. Trials. 2020;21(1):614. doi:10.1186/s13063-020-04547-0
  • Prasad K, McNair ED, Qureshi AM, Casper-Bell G. Vitamin E slows the progression of hypercholesterolemia-induced oxidative stress in heart, liver, and kidney. Mol Cell Biochem. 2012;368(1–2):181–187. doi:10.1007/s11010-012-1358-z
  • Moser MA, Chun OK. Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci. 2016;17(8):1328. doi:10.3390/ijms17081328
  • Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564–1581. doi:10.1111/all.14364
  • Michele CA, Angelo B, Valeria L, Teresa M, Pasquale DL. Vitamin supplements in the Era of SARS-CoV2 pandemic. GSC Biol Pharm Sci. 2020;11(02):007–019. doi:10.30574/gscbps.2020.11.2.0114
  • Gao X, Wilde PE, Lichtenstein AH, Bermudez OI, Tucker KL. The maximal amount of dietary alpha-tocopherol intake in U.S. adults (NHANES 2001-2002). J Nutr. 2006;136(4):1021–1026. doi:10.1093/jn/136.4.1021
  • Xu Y, Baylink DJ, Chen CS, et al. The importance of vitamin D metabolism as a potential prophylactic, immunoregulatory, and neuroprotective treatment for COVID-19. J Transl Med. 2020;18(1):322. doi:10.1186/s12967-020-02488-5
  • Owen KN, Dewald O. Vitamin E Toxicity. [Updated 2020 Nov 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021. Available from https://www.ncbi.nlm.nih.gov/books/NBK564373/. Accessed April 4, 2021.
  • Brody T. Nutritional Biochemistry. 2nd ed ed. San Diego: Academic Press; 1999.
  • Maresz K. Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med (Encinitas). 2015;14(1):34–39.
  • Shearer MJ. Vitamin K. Lancet. 1995;345(8944):229–234. doi:10.1016/s0140-6736(95)90227-9
  • Holmes MV, Hunt BJ, Shearer MJ. The role of dietary vitamin K in the management of oral vitamin K antagonists. Blood Rev. 2012;26(1):1–14. doi:10.1016/j.blre.2011.07.002
  • Booth SL. Vitamin K: food composition and dietary intakes. Food Nutr Res. 2012;56. doi:10.3402/fnr.v56i0.5505
  • Eden RE, Coviello JM. Vitamin K Deficiency. [Updated 2020 Nov 21]. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK536983/. Accessed December 10, 2020.
  • Trumbo P, Yates AA, Schlicker S, Poos M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc. 2001;101(3):294–301. doi:10.1016/S0002-8223(01)00078-5
  • Booth SL. Roles for vitamin K beyond coagulation. Annu Rev Nutr. 2009;29:89–110. doi:10.1146/annurev-nutr-080508-141217
  • Schurgers LJ, Spronk HM, Soute BA, Schiffers PM, DeMey JG, Vermeer C. Regression of warfarin-induced medial elastocalcinosis by high intake of vitamin K in rats. Blood. 2007;109(7):2823–2831. doi:10.1182/blood-2006-07-035345
  • Mukai K, Itoh S, Morimoto H. Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K, and tocopherolquinone) in solution. J Biol Chem. 1992;267(31):22277–22281.
  • Vervoort LM, Ronden JE, Thijssen HH. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem Pharmacol. 1997;54(8):871–876. doi:10.1016/s0006-2952(97)00254-2
  • Hodges SJ, Pitsillides AA, Ytrebø LM, Soper R. Anti-inflammatory actions of vitamin K. In: Vitamin K2: Vital for Health and Wellbeing. 2017;153.
  • Olson RE. Vitamin K. In: Shils M, Olson JA, Shike M, Ross AC, editors. Modern Nutrition in Health and Disease. 9th ed. Baltimore: Lippincott Williams & Wilkins; 1999:363–380.
  • Shearer MJ. Vitamin K deficiency bleeding (VKDB) in early infancy. Blood Rev. 2009;23(2):49–59. doi:10.1016/j.blre.2008.06.001
  • Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001.
  • Institute of Medicine (US) Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment. Washington (DC): National Academies Press (US); 2000.
  • McPherson C. Vitamin K deficiency bleeding: an ounce of prevention. Neonatal Netw. 2020;39(6):356–362. doi:10.1891/0730-0832/11-T-630
  • Dofferhoff ASM, Piscaer I, Schurgers LJ, et al. Reduced vitamin K status as a potentially modifiable risk factor of severe COVID-19. Clin Infect Dis. 2020:ciaa1258. doi:10.1093/cid/ciaa1258.
  • Speed V, Patel RK, Byrne R, Roberts LN, Arya R. A perfect storm: root cause analysis of supra-therapeutic anticoagulation with vitamin K antagonists during the COVID-19 pandemic. Thromb Res. 2020;192:73–74. doi:10.1016/j.thromres.2020.05.024
  • Marsden J, Darke S, Hall W, et al. Mitigating and learning from the impact of COVID-19 infection on addictive disorders. Addiction. 2020;115(6):1007–1010. doi:10.1111/add.15080
  • Hylek EM, Heiman H, Skates SJ, Sheehan MA, Singer DE. Acetaminophen and other risk factors for excessive warfarin anticoagulation. JAMA. 1998;279(9):657–662. doi:10.1001/jama.279.9.657
  • Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi:10.1111/jth.14768
  • Hamblin J. Why Some People Get Sicker Than Others COVID-19 is proving to be a disease of the immune system. This could, in theory, be controlled. 2020. Available from: https://www.theatlantic.com/health/archive/2020/04/coronavirus-immune-response/610228/. Accessed January 12, 2021.
  • Velavan TP, Meyer CG. Mild versus severe COVID-19: laboratory markers. Int J Infect Dis. 2020;95:304–307. doi:10.1016/j.ijid.2020.04.061
  • Turshudzhyan A. Anticoagulation Options for Coronavirus Disease 2019 (COVID-19)-induced coagulopathy. Cureus. 2020;12(5):e8150. doi:10.7759/cureus.8150
  • Chakraverty R, Davidson S, Peggs K, Stross P, Garrard C, Littlewood TJ. The incidence and cause of coagulopathies in an intensive care population. Br J Haematol. 1996;93(2):460–463. doi:10.1046/j.1365-2141.1996.5101050.x
  • Crowther MA, McDonald E, Johnston M, Cook D. Vitamin K deficiency and D-dimer levels in the intensive care unit: a prospective cohort study. Blood Coagul Fibrinolysis. 2002;13(1):49–52. doi:10.1097/00001721-200201000-00007
  • Becker RC. COVID-19 update: COVID-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50(1):54–67. doi:10.1007/s11239-020-02134-3
  • Piscaer I, van den Ouweland JMW, Vermeersch K, et al. Low Vitamin K status is associated with increased elastin degradation in chronic obstructive pulmonary disease. J Clin Med. 2019;8(8):1116. doi:10.3390/jcm8081116
  • Riphagen IJ, Keyzer CA, Drummen NEA, et al. Prevalence and Effects of Functional Vitamin K Insufficiency: the PREVEND Study. Nutrients. 2017;9(12):E1334. doi:10.3390/nu9121334
  • Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
  • Obe BH, Retter A, McClintock C. Practical guidance for the prevention of thrombosis and management of coagulopathy and disseminated intravascular coagulation of patients infected with COVID-19. 2020. Available from: https://academy.isth.org/isth/document_library?dc_id=9449&f=menu%3D8%2Abrowseby%3D8%2Asortby%3D2%2Alabel%3D19794. Accessed April 6, 2021.
  • Thachil J, Tang N, Gando S, et al. DOACs and “newer” hemophilia therapies in COVID-19: reply. J Thromb Haemost. 2020;18(7):1795–1796. doi:10.1111/jth.14841
  • Thorp JA, Gaston L, Caspers DR, Pal ML. Current concepts and controversies in the use of vitamin K. Drugs. 1995;49(3):376–387. doi:10.2165/00003495-199549030-00005
  • Reiffel JA. An important indirect drug interaction between dronedarone and warfarin that may be extrapolated to other drugs that can alter gastrointestinal function. Am Heart J. 2011;161(2):e5.
  • Soto ME, Guarner-Lans V, Soria-Castro E, Manzano Pech L, Is Antioxidant P-TI. Therapy a useful complementary measure for Covid-19 treatment? An algorithm for its application. Medicina (Kaunas). 2020;56(8):386. doi:10.3390/medicina56080386
  • Nathens AB, Neff MJ, Jurkovich GJ, et al. Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg. 2002;236(6):814–822. doi:10.1097/00000658-200212000-00014
  • Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51(5):1000–1013. doi:10.1016/j.freeradbiomed.2011.05.017
  • Crimi E, Liguori A, Condorelli M, et al. The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth Analg. 2004;99(3):857–63, table of contents. doi:10.1213/01.ANE.0000133144.60584.F6
  • Howe KP, Clochesy JM, Goldstein LS, Owen H. Mechanical ventilation antioxidant trial. Am J Crit Care. 2015;24(5):440–445. doi:10.4037/ajcc2015335
  • Preiser JC, Van Gossum A, Berré J, Vincent JL, Carpentier Y. Enteral feeding with a solution enriched with antioxidant vitamins A, C, and E enhances the resistance to oxidative stress. Crit Care Med. 2000;28(12):3828–3832. doi:10.1097/00003246-200012000-00013