110
Views
24
CrossRef citations to date
0
Altmetric
Original Research

Gut Microbiota Dysbiosis Correlates with Abnormal Immune Response in Moderate COVID-19 Patients with Fever

, , , , , , & show all
Pages 2619-2631 | Published online: 17 Jun 2021

References

  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) Outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323(13):1239–1242. doi:10.1001/jama.2020.2648
  • Chen SL, Feng HY, Xu H, et al. Patterns of deterioration in moderate patients with COVID-19 From Jan 2020 to Mar 2020: a Multi-Center, Retrospective Cohort Study in China. Front Med (Lausanne). 2020;7:567296. doi:10.3389/fmed.2020.567296
  • Islam MA, Kundu S, Alam SS, Hossan T, Kamal MA, Hassan R. Prevalence and characteristics of fever in adult and paediatric patients with coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis of 17515 patients. PLoS One. 2021;16(4):e0249788. doi:10.1371/journal.pone.0249788
  • Hui DSC, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Am. 2019;33(4):869–889. doi:10.1016/j.idc.2019.07.001
  • Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016;49:129–133. doi:10.1016/j.ijid.2016.06.015
  • Ws Chew N, Nicholas Ngiam J, Meng Tham S, et al. Fever as a predictor of adverse outcomes in COVID-19. QJM. 2021. doi:10.1093/qjmed/hcab023
  • Tharakan S, Nomoto K, Miyashita S, Ishikawa K. Body temperature correlates with mortality in COVID-19 patients. Crit Care. 2020;24(1):298. doi:10.1186/s13054-020-03045-8
  • Shu L, Wang X, Li M, et al. Clinical characteristics of moderate COVID-19 patients aggravation in Wuhan Stadium Cabin Hospital: a 571 cases of retrospective cohort study. J Med Virol. 2021;93(2):1133–1140. doi:10.1002/jmv.26414
  • Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020;35(5):744–748. doi:10.1111/jgh.15047
  • Han C, Duan C, Zhang S, et al. Digestive Symptoms in COVID-19 patients with mild disease severity: clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol. 2020;115(6):916–923. doi:10.14309/ajg.0000000000000664
  • Ma C, Cong Y, Zhang H. COVID-19 and the Digestive System. Am J Gastroenterol. 2020;115(7):1003–1006. doi:10.14309/ajg.0000000000000691
  • Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125–1136 e1128. doi:10.1016/j.cell.2016.10.020
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi:10.1016/j.cell.2014.03.011
  • Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020;133:155151. doi:10.1016/j.cyto.2020.155151
  • Abbasifard M, Khorramdelazad H. The bio-mission of interleukin-6 in the pathogenesis of COVID-19: a brief look at potential therapeutic tactics. Life Sci. 2020;257:118097. doi:10.1016/j.lfs.2020.118097
  • Fathi N, Rezaei N. Lymphopenia in COVID-19: therapeutic opportunities. Cell Biol Int. 2020;44(9):1792–1797. doi:10.1002/cbin.11403
  • Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473–474. doi:10.1126/science.abb8925
  • Schirmer M, Kumar V, Netea MG, Xavier RJ. The causes and consequences of variation in human cytokine production in health. Curr Opin Immunol. 2018;54:50–58. doi:10.1016/j.coi.2018.05.012
  • Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol. 2015;15(6):335–349. doi:10.1038/nri3843
  • Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944–955 e948. doi:10.1053/j.gastro.2020.05.048
  • Yeoh YK, Zuo T, Lui GC, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698–706. doi:10.1136/gutjnl-2020-323020
  • National Health Commission of the People’s Republic of China. Chinese clinical guidance for COVID-19 pneumonia diagnosis and treatment (7th edition). Available from: http://www.nhc.gov.cn/jkj/s3577/202009/318683cbfaee4191aee29cd774b19d8d/files/f9ea38ce2c2d4352bf61ab0feada439f.pdf. Accessed May 14, 2021.
  • Di Ciaula A, Stella A, Bonfrate L, Wang DQH, Portincasa P. Gut microbiota between environment and genetic background in familial Mediterranean fever (FMF). Genes (Basel). 2020;11:9. doi:10.3390/genes11091041
  • Haak BW, de Jong HK, Kostidis S, et al. Altered patterns of compositional and functional disruption of the gut microbiota in typhoid fever and nontyphoidal febrile illness. Open Forum Infect Dis. 2020;7(7):ofaa251. doi:10.1093/ofid/ofaa251
  • Shehab El-Din EMR, Elgaml A, Ali YM, Hassan R. Inhibition of the classical pathway of complement activation impairs bacterial clearance during Enterococcus faecalis infection. Infect Immun. 2021. doi:10.1128/IAI.00660-20
  • Ran S, Huang J, Liu B, Gu S, Jiang W, Liang J. Enterococcus Faecalis activates NLRP3 inflammasomes leading to increased interleukin-1 beta secretion and pyroptosis of THP-1 macrophages. Microb Pathog. 2021;154:104761. doi:10.1016/j.micpath.2021.104761
  • Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5(1):153. doi:10.1186/s40168-017-0373-4
  • Candelli M, Nista EC, Nestola M, et al. Saccharomyces cerevisiae-associated diarrhea in an immunocompetent patient with ulcerative colitis. J Clin Gastroenterol. 2003;36(1):39–40. doi:10.1097/00004836-200301000-00012
  • Liu L, Song L, Deng R, et al. Citrobacter freundii activates the NLRP3 inflammasome via T6SS. J Infect Dis. 2020. doi:10.1093/infdis/jiaa692
  • Sierra Y, Gonzalez-Diaz A, Tubau F, et al. Emergence of multidrug resistance among Haemophilus parainfluenzae from respiratory and urogenital samples in Barcelona, Spain. Eur J Clin Microbiol Infect Dis. 2020;39(4):703–710. doi:10.1007/s10096-019-03774-x
  • Xiaomin S, Yiming L, Yuying Y, Zhangqi S, Yongning W, Shaolin W. Global impact of mcr-1-positive Enterobacteriaceae bacteria on “one health”. Crit Rev Microbiol. 2020;46(5):565–577. doi:10.1080/1040841X.2020.1812510
  • Sofi MH, Wu Y, Ticer T, et al. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight. 2021;6(3). doi:10.1172/jci.insight.136841.
  • Li K, Hao Z, Du J, Gao Y, Yang S, Zhou Y. Bacteroides thetaiotaomicron relieves colon inflammation by activating aryl hydrocarbon receptor and modulating CD4(+)T cell homeostasis. Int Immunopharmacol. 2021;90:107183. doi:10.1016/j.intimp.2020.107183
  • Rodriguez-Castano GP, Dorris MR, Liu X, Bolling BW, Acosta-Gonzalez A, Rey FE. Bacteroides thetaiotaomicron starch utilization promotes quercetin degradation and butyrate production by eubacterium ramulus. Front Microbiol. 2019;10:1145. doi:10.3389/fmicb.2019.01145
  • Ulsemer P, Toutounian K, Schmidt J, Karsten U, Goletz S. Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl Environ Microbiol. 2012;78(2):528–535. doi:10.1128/AEM.06641-11
  • Wang Y, Shao S, Guo C, Zhang S, Li M, Ding K. The homogenous polysaccharide SY01-23 purified from leaf of Morus alba L. has bioactivity on human gut Bacteroides ovatus and Bacteroides cellulosilyticus. Int J Biol Macromol. 2020;158:698–707. doi:10.1016/j.ijbiomac.2020.05.009
  • Ricci C, Ortore MG, Vilasi S, et al. Stability and disassembly properties of human naive Hsp60 and bacterial GroEL chaperonins. Biophys Chem. 2016;208:68–75. doi:10.1016/j.bpc.2015.07.006
  • Elfaitouri A, Herrmann B, Bolin-Wiener A, et al. Epitopes of microbial and human heat shock protein 60 and their recognition in myalgic encephalomyelitis. PLoS One. 2013;8(11):e81155. doi:10.1371/journal.pone.0081155
  • Kol A, Bourcier T, Lichtman AH, Libby P. Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest. 1999;103(4):571–577. doi:10.1172/JCI5310
  • Eskilsson A, Mirrasekhian E, Dufour S, Schwaninger M, Engblom D, Blomqvist A. Immune-induced fever is mediated by IL-6 receptors on brain endothelial cells coupled to STAT3-dependent induction of brain endothelial prostaglandin synthesis. J Neurosci. 2014;34(48):15957–15961. doi:10.1523/JNEUROSCI.3520-14.2014
  • Choron RL, Butts CA, Bargoud C, et al. Fever in the ICU: a Predictor of Mortality in Mechanically Ventilated COVID-19 Patients. J Intensive Care Med. 2021;36(4):484–493. doi:10.1177/0885066620979622