65
Views
4
CrossRef citations to date
0
Altmetric
Original Research

FNDC1 Polymorphism (rs3003174 C > T) Increased the Incidence of Coronary Artery Aneurysm in Patients with Kawasaki Disease in a Southern Chinese Population

, , , , , , , , , , , & show all
Pages 2633-2640 | Published online: 21 Jun 2021

References

  • McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American heart association. Circulation. 2017;135(17):e927–e999. doi:10.1161/CIR.0000000000000484
  • Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child. 2015;100(11):1084–1088. doi:10.1136/archdischild-2014-307536
  • Kumrah R, Vignesh P, Rawat A, et al. Immunogenetics of Kawasaki disease. Clin Rev Allergy Immunol. 2020;59(1):122–139. doi:10.1007/s12016-020-08783-9
  • Rife E, Gedalia A. Kawasaki Disease: an Update. Curr Rheumatol Rep. 2020;22(10):75. doi:10.1007/s11926-020-00941-4
  • Skochko SM, Jain S, Sun X, et al. Kawasaki disease outcomes and response to therapy in a multiethnic community: a 10-year experience. J Pediatr. 2018;203:e3. doi:10.1016/j.jpeds.2018.07.090
  • Shrestha S, Wiener HW, Aissani B, et al. Imputation of class I and II HLA loci using high-density SNPs from ImmunoChip and their associations with Kawasaki disease in family-based study. Int J Immunogenet. 2015;42(3):140–146. doi:10.1111/iji.12190
  • Lu Z, Xu Y, Fu L, et al. P2RY12:rs7637803TT variant genotype increases coronary artery aneurysm risk in Kawasaki disease in a southern Chinese population. J Gene Med. 2019;21(1):e3066. doi:10.1002/jgm.3066
  • Pi L, Xu Y, Fu L, et al. A PEAR1 polymorphism (rs12041331) is associated with risk of coronary artery aneurysm in Kawasaki disease. Ann Hum Genet. 2019;83(1):54–62. doi:10.1111/ahg.12285
  • Liu Y, Fu L, Pi L, et al. An Angiotensinogen Gene Polymorphism (rs5050) Is Associated with the Risk of Coronary Artery Aneurysm in Southern Chinese Children with Kawasaki Disease. Dis Markers. 2019;2019:2849695. doi:10.1155/2019/2849695
  • Shimizu C, Eleftherohorinou H, Wright VJ, et al. Genetic Variation in the SLC8A1 Calcium Signaling Pathway Is Associated with Susceptibility to Kawasaki Disease and Coronary Artery Abnormalities. Circ Cardiovasc Genet. 2016;9(6):559–568. doi:10.1161/CIRCGENETICS.116.001533
  • Onouchi Y, Gunji T, Burns JC, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet. 2008;40(1):35–42. doi:10.1038/ng.2007.59
  • Kuo HC, Hsu Y-W, Lo M-H, et al. Single-nucleotide polymorphism rs7251246 in ITPKC is associated with susceptibility and coronary artery lesions in Kawasaki disease. PLoS One. 2014;9(3):e91118. doi:10.1371/journal.pone.0091118
  • Ren J, Niu G, Wang X, et al. Overexpression of FNDC1 in Gastric Cancer and its Prognostic Significance. J Cancer. 2018;9(24):4586–4595. doi:10.7150/jca.27672
  • Halper J, Kjaer M. Basic Components of Connective Tissues and Extracellular Matrix: elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins. Advances in Experimental Medicine and Biology. 2014;802:31–47. doi:10.1007/978-94-007-7893-1_3
  • Marchand M, Monnot C, Muller L, et al. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 2019;89:147–156. doi:10.1016/j.semcdb.2018.08.007
  • Fernandez-Garcia B, Eiró N, Marín L, et al. Expression and prognostic significance of fibronectin and matrix metalloproteases in breast cancer metastasis. Histopathology. 2014;64(4):512–522. doi:10.1111/his.12300
  • Anderegg U, Breitschwerdt K, Kohler MJ, et al. MEL4B3, a novel mRNA is induced in skin tumors and regulated by TGF-b and proinflammatory cytokines. Exp Dermatol. 2005;Sep;14(9(9):709–718. doi:10.1111/j.0906-6705.2005.00349.x
  • Hayashi H, Al Mamun A, Sakima M, et al. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129(6):1210–1222. doi:10.1242/jcs.181883
  • Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: a Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2(12):1097–1105. doi:10.1177/1947601911423031
  • van Ingen G, Li J, Goedegebure A, et al. Genome-wide association study for acute otitis media in children identifies FNDC1 as disease contributing gene. Nat Commun. 2016;7(1):12792. doi:10.1038/ncomms12792
  • Schönbach C, Chauvet C, Ménard A, et al. Alterations in Fibronectin Type III Domain Containing 1 Protein Gene Are Associated with Hypertension. PLoS One. 2016;11(4):e0151399. doi:10.1371/journal.pone.0151399
  • Council on Cardiovascular Disease in the Young, C.o.R.F. Endocarditis, and Kawasaki Disease, American Heart Association, Diagnostic Guidelines for Kawasaki Disease. AHA Sci Statement. 2001.
  • Newburger JW, Takahashi M, Gerber MA, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics. 2004;114(6):1708–1733. doi:10.1542/peds.2004-2182
  • Joshi M, Tulloh R. Kawasaki disease and coronary artery aneurysms: from childhood to adulthood. Future Cardiol. 2017;Sep;13(5:491–501. doi:10.2217/fca-2017-0039
  • Noval Rivas M, Arditi M. Kawasaki disease: pathophysiology and insights from mouse models. Nat Rev Rheumatol. 2020;16(7):391–405.
  • To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair. 2011;4:21.
  • Lapointe J, Li C, Higgins JP, et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci U S A. 2004;101(3):811–816. doi:10.1073/pnas.0304146101
  • Sato M, Jiao Q, Honda T, et al. Activator of G protein signaling 8 (AGS8) is required for hypoxia-induced apoptosis of cardiomyocytes: role of G betagamma and connexin 43 (CX43). J Biol Chem. 2009;284(45):31431–31440. doi:10.1074/jbc.M109.014068
  • Stephens L, Smrcka A, Cooke FT, et al. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein beta gamma subunits. Cell. 1994;77(1):83–93. doi:10.1016/0092-8674(94)90237-2
  • Hirsch E. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 2000;287(5455):1049–1053. doi:10.1126/science.287.5455.1049
  • Runne C, Chen S. PLEKHG2 promotes heterotrimeric G protein βγ-stimulated lymphocyte migration via Rac and Cdc42 activation and actin polymerization. Mol Cell Biol. 2013;Nov;33(21:4294–4307. doi:10.1128/MCB.00879-13
  • Sato M, Cismowski MJ, Toyota E, et al. Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with Gbetagamma. Proc Natl Acad Sci U S A. 2006;103(3):797–802. doi:10.1073/pnas.0507467103
  • Yuan C, Sato M, Lanier SM, et al. Signaling by a Non-dissociated Complex of G Protein βγ and α Subunits Stimulated by a Receptor-independent Activator of G Protein Signaling, AGS8. J Biol Chem. 2007;282(27):19938–19947. doi:10.1074/jbc.M700396200
  • Geng R, Wang Q, Chen E, et al. Current Understanding of Host Genetics of Otitis Media. Front Genet. 2019;10:1395. doi:10.3389/fgene.2019.01395
  • Bouchareb R, Guauque-Olarte S, Snider J, et al. Proteomic Architecture of Valvular Extracellular Matrix: FNDC1 and MXRA5 Are New Biomarkers of Aortic Stenosis. JACC Basic Transl Sci. 2021;6(1):25–39. doi:10.1016/j.jacbts.2020.11.008
  • Li Y, Zheng Q, Zou L, et al. Kawasaki disease shock syndrome: clinical characteristics and possible use of IL-6, IL-10 and IFN-gamma as biomarkers for early recognition. Pediatr Rheumatol Online J. 2019;17(1):1. doi:10.1186/s12969-018-0303-4
  • Burns JC. History of the worldwide emergence of Kawasaki disease. Int J Rheum Dis. 2017.