71
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Association Between Interleukin-12 and Sarcopenia

, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2019-2029 | Published online: 18 May 2021

References

  • Janssen I. Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc. 2006;54:56–62. doi:10.1111/j.1532-5415.2005.00540.x
  • Ferrucci L. The origins of age-related proinflammatory state. Blood. 2005;105:2294–2299. doi:10.1182/blood-2004-07-2599
  • Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3–19. doi:10.1002/jcsm.12238
  • Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. 2016;594(8):1965–1978. doi:10.1113/jp270561
  • Saini J, McPhee JS, Al-Dabbagh S, Stewart CE, Al-Shanti N. Regenerative function of immune system: modulation of muscle stem cells. Ageing Res Rev. 2016;27(67):67–76. doi:10.1016/j.arr.2016.03.006
  • Gonzalez-Freire M, de Cabo R, Studenski SA, Ferrucci L. The neuromuscular junction: aging at the crossroad between nerves and muscle. Front Aging Neurosci. 2014;6(208). doi:10.3389/fnagi.2014.00208
  • Dalle S, Rossmeislova L, Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front Physiol. 2017;8(1045). doi:10.3389/fphys.2017.01045
  • Wikby A. The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev. 2006;127(8):695–704. doi:10.1016/j.mad.2006.04.003
  • Roubenoff R. Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol a Biol Sci Med Sci. 1998;53:M20–M26. doi:10.1093/gerona/53a.1.m20
  • Krabbe KS. Ageing is associated with a prolonged fever response in human endotoxemia. Clin Diagn Lab Immunol. 2001;8:333–338. doi:10.1128/cdli.8.2.333-338.2001
  • Bruunsgaard H, Skinhoj P, Qvist J, Pedersen BK. Elderly humans show prolonged in vivo inflammatory activity during pneumococcal infections. J Infect Dis. 1999;180:551–554. doi:10.1086/314873
  • Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–455. doi:10.1038/nature12034
  • Tidball JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol. 2011;1:2029–2062. doi:10.1002/cphy.c100092
  • Dufresne SS, Frenette J, Dumont NA. [Inflammation and muscle regeneration, a double-edged sword]. Med Sci (Paris). 2016;32:591–597. doi:10.1051/medsci/20163206022
  • Smith C, Kruger MJ, Smith RM, Myburgh KH. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med. 2008;38:947–969. doi:10.2165/00007256-200838110-00005
  • Cui CY. Skewed macrophage polarization in aging skeletal muscle. Aging Cell. 2019;18(e13032). doi:10.1111/acel.13032
  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–6173. doi:10.4049/jimmunol.164.12.6166
  • Ismaeel A. Role of transforming growth factor-β in skeletal muscle fibrosis: a review. Int J Mol Sci. 2019;20(2446):2446. doi:10.3390/ijms20102446
  • Foroutan M. Single sample scoring of molecular phenotypes. BMC Bioinform. 2018;19:404. doi:10.1186/s12859-018-2435-4
  • Cruz-Jentoft AJ. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(16–31):601. doi:10.1093/ageing/afy169
  • Dodds RM. Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9(:e113637. doi:10.1371/journal.pone.0113637
  • Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA. Total and appendicular lean mass reference ranges for Australian men and women: the Geelong osteoporosis study. Calcif Tissue Int. 2014;94:363–372. doi:10.1007/s00223-013-9830-7
  • Cruz-Jentoft AJ. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39:412–423. doi:10.1093/ageing/afq034
  • Mendias CL. Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve. 2012;45(1):55–59. doi:10.1002/mus.22232
  • Carlson ME, Hsu M, Conboy IM. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature. 2008;454(7203):528–532. doi:10.1038/nature07034
  • Kim J, Lee J. Role of transforming growth factor-β in muscle damage and regeneration: focused on eccentric muscle contraction. J Exerc Rehabil. 2017;13(6):621–626. doi:10.12965/jer.1735072.536
  • Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13(10):251–276. doi:10.1146/annurev.iy.13.040195.001343
  • Romanazzo S, Forte G, Morishima K, Taniguchi A. IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomater Sci. 2015;3(3):469–479. doi:10.1039/c4bm00315b
  • Vom Berg J. Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease-like pathology and cognitive decline. Nat Med. 2012;18(12):1812–1819. doi:10.1038/nm.2965
  • Tan MS. IL12/23 p40 inhibition ameliorates Alzheimer’s disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633–646. doi:10.3233/jad-131148
  • Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Association and interaction effects of interleukin-12 Related genes and physical activity on cognitive aging in old adults in the Taiwanese population. Front Neurol. 2019;10(1065). doi:10.3389/fneur.2019.01065
  • Suzuki K. Cytokine Response to Exercise and Its Modulation. Antioxidants (Basel). 2018;7(17). doi:10.3390/antiox7010017
  • Suzuki K. Exhaustive exercise and type-1/type-2 cytokine balance with special focus on interleukin-12 p40/p70. Exerc Immunol Rev. 2003;9(48):48–57.
  • Zamani A, Salehi I, Behzad M. Moderate exercise enhances the production of interferon-γ and interleukin-12 in peripheral blood mononuclear cells. Immune Netw. 2017;17(3):186. doi:10.4110/in.2017.17.3.186
  • Dort J, Fabre P, Molina T, Dumont NA. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells Int. 2019;4761427. doi:10.1155/2019/4761427
  • Wang Y, Wehling-Henricks M, Samengo G, Tidball JG. Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide. Aging Cell. 2015;14:678–688. doi:10.1111/acel.12350
  • Tam CS. Low macrophage accumulation in skeletal muscle of obese type 2 diabetics and elderly subjects. Obesity (Silver Spring). 2012;20(7):1530–1533. doi:10.1038/oby.2012.24
  • Moratal C. IL-1β- and IL-4-polarized macrophages have opposite effects on adipogenesis of intramuscular fibro-adipogenic progenitors in humans. Sci Rep. 2018;8(17005). doi:10.1038/s41598-018-35429-w