123
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Sodium Bituminosulfonate Used to Treat Rosacea Modulates Generation of Inflammatory Mediators by Primary Human Neutrophils

, , , , , & ORCID Icon show all
Pages 2569-2582 | Published online: 16 Jun 2021

References

  • Zhang H, Tang K, Wang Y, Fang R, Sun Q. Rosacea treatment: review and update. Dermatol Ther. 2021;11(1):13–24. doi:10.1007/s13555-020-00461-0
  • Gether L, Overgaard LK, Egeberg A, Thyssen JP. Incidence and prevalence of rosacea: a systematic review and meta-analysis. Br J Dermatol. 2018;179(2):282–289. doi:10.1111/bjd.16481
  • Buddenkotte J, Steinhoff M. Recent advances in understanding and managing rosacea. F1000Res. 2018;7:1885. doi:10.12688/f1000research.16537.1
  • Woo YR, Lim JH, Cho DH, Park HJ. Rosacea: molecular mechanisms and management of a chronic cutaneous inflammatory condition. Int J Mol Sci. 2016;17(9):1562. doi:10.3390/ijms17091562
  • Meyer-Hoffert U, Schroder JM. Epidermal proteases in the pathogenesis of rosacea. J Investig Dermatol Symp Proc. 2011;15(1):16–23. doi:10.1038/jidsymp.2011.2
  • Zheng Y, Niyonsaba F, Ushio H, et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. Br J Dermatol. 2007;157(6):1124–1131. doi:10.1111/j.1365-2133.2007.08196.x
  • Millikan L. The proposed inflammatory pathophysiology of rosacea: implications for treatment. Skinmed. 2003;2(1):43–47. doi:10.1111/j.1540-9740.2003.01876.x
  • Kuroki M, Voest EE, Amano S, et al. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest. 1996;98(7):1667–1675. doi:10.1172/JCI118962
  • Gerber PA, Buhren BA, Steinhoff M, Homey B. Rosacea: the cytokine and chemokine network. J Investig Dermatol Symp Proc. 2011;15(1):40–47. doi:10.1038/jidsymp.2011.9
  • Diezel W, Schewe T, Rohde E, Rosenbach T, Czarnetzki BM. [Ammonium bituminosulfonate (Ichthyol). Anti-inflammatory effect and inhibition of the 5-lipoxygenase enzyme]. Hautarzt. 1992;43(12):772–774. [German].
  • Unna PG. Aphorismen über Schwefeltherapie und Schwefelpräparate. IV Ichthyol. Monatshefte für Praktische Dermatologie. 1882;1:328–333.
  • Czarnetzki BM. Inhibitory effects of shale oils (Ichthyols) on the secretion of chemotactic leukotrienes from human leukocytes and on leukocyte migration. J Investig Dermatol. 1986;87(6):694–697. doi:10.1111/1523-1747.ep12456630
  • Schewe C, Schewe T, Rohde E, Diezel W, Czarnetzki BM. Inhibitory effects of sulfonated shale oils (ammonium bituminosulphonates, Ichthyols) on enzymes of polyenoic fatty acid metabolism. Arch Dermatol Res. 1994;286(3–4):137–141. doi:10.1007/BF00374208
  • Kownatzki E, Kapp A, Uhrich S. Inhibitory effect of sulfonated shale oils (ammonium bituminosulfonate) on the stimulation of neutrophilic granulocytes by the chemotactic tripeptide f-Met-Leu-Phe. Arch Dermatol Res. 1986;278(3):190–193. doi:10.1007/BF00412922
  • Pantke R. [Bacteriological studies of drugs from shale oil]. Arzneimittel-Forschung. 1965;15(5):570–573. [German].
  • Listemann H, Scholermann A, Meigel W. [Antifungal activity of sulfonated shale oils]. Arzneimittel-Forschung. 1993;43(7):784–788. [German].
  • Boyd AS. Ichthammol revisited. Int J Dermatol. 2010;49(7):757–760. doi:10.1111/j.1365-4632.2010.04551.x
  • Buckley DA, Root T, Bath S. Specials recommended by the British association of dermatologists for skin disease. London, UK: Clinical Standards Unit of the British Association of Dermatologists; 2014:9 Available from: www.bad.org.uk/specials. Accessed May 31, 2021.
  • Koch R, Wilbrand G. Dark sulfonated shale oil vs placebo in the systemic treatment of rosacea. J Euro Acad Dermatol Venereol. 1999;12(2Suppl):143.
  • Rabe KF, Perkins RS, Dent G, Gustmann H, Barnes PJ. Inhibitory effects of sulfonated shale oil fractions on the oxidative burst and Ca++ mobilization in stimulated macrophages. Arzneimittel-Forschung. 1994;44(2):166–170.
  • Kownatzki E, Uhrich S, Schopf E. The effect of a sulfonated shale oil extract (Ichthyol) on the migration of human neutrophilic granulocytes in vitro. Arch Dermatol Res. 1984;276(4):235–239. doi:10.1007/BF00414234
  • Kanashiro A, Souza JG, Kabeya LM, Azzolini AE, Lucisano-Valim YM. Elastase release by stimulated neutrophils inhibited by flavonoids: importance of the catechol group. Z Naturforsch C J Biosci. 2007;62(5–6):357–361. doi:10.1515/znc-2007-5-607
  • Gaudry M, Bregerie O, Andrieu V, El Benna J, Pocidalo MA, Hakim J. Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood. 1997;90(10):4153–4161. doi:10.1182/blood.V90.10.4153
  • Troeberg L, Nagase H. Monitoring metalloproteinase activity using synthetic fluorogenic substrates. Curr Protoc Protein Sci. 2004;Unit–21.16.
  • Matsubara Y, Matsumoto T, Koseki J, Kaneko A, Aiba S, Yamasaki K. Inhibition of human kallikrein 5 protease by triterpenoids from natural sources. Molecules. 2017;22(11):1829. doi:10.3390/molecules22111829
  • Wan M, Sabirsh A, Wetterholm A, Agerberth B, Haeggstrom JZ. Leukotriene B4 triggers release of the cathelicidin LL-37 from human neutrophils: novel lipid-peptide interactions in innate immune responses. FASEB J. 2007;21(11):2897–2905. doi:10.1096/fj.06-7974com
  • Wisniewska JM, Rodl CB, Kahnt AS, et al. Molecular characterization of EP6--a novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochem Pharmacol. 2012;83(2):228–240. doi:10.1016/j.bcp.2011.10.012
  • Chen Y, Junger WG. Measurement of oxidative burst in neutrophils. Methods Mol Biol. 2012;844:115–124.
  • Ingelfinger R, Henke M, Roser L, et al. Unraveling the pharmacological potential of lichen extracts in the context of cancer and inflammation with a broad screening approach. Front Pharmacol. 2020;11:1322. doi:10.3389/fphar.2020.01322
  • Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood. 2003;102(7):2660–2669. doi:10.1182/blood-2003-04-1078
  • Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods. 1995;184(1):39–51. doi:10.1016/0022-1759(95)00072-I
  • Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. doi:10.3389/fphys.2018.00113
  • McMahon F, Banville N, Bergin DA, et al. Activation of neutrophils via IP3 pathway following exposure to demodex-associated bacterial proteins. Inflammation. 2016;39(1):425–433. doi:10.1007/s10753-015-0264-4
  • Yamasaki K, Di Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13(8):975–980. doi:10.1038/nm1616
  • Kim M, Kim KE, Jung HY, et al. Recombinant erythroid differentiation regulator 1 inhibits both inflammation and angiogenesis in a mouse model of rosacea. Exp Dermatol. 2015;24(9):680–685. doi:10.1111/exd.12745
  • Muto Y, Wang Z, Vanderberghe M, Two A, Gallo RL, Di Nardo A. Mast cells are key mediators of cathelicidin-initiated skin inflammation in rosacea. J Investig Dermatol. 2014;134(11):2728–2736. doi:10.1038/jid.2014.222
  • Schwab VD, Sulk M, Seeliger S, et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J Investig Dermatol Symp Proc. 2011;15(1):53–62. doi:10.1038/jidsymp.2011.6
  • Yamasaki K, Kanada K, Macleod DT, et al. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Investig Dermatol. 2011;131(3):688–697. doi:10.1038/jid.2010.351
  • Lacy P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol. 2006;2(3):98–108. doi:10.1186/1710-1492-2-3-98
  • Sorensen OE, Follin P, Johnsen AH, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97(12):3951–3959. doi:10.1182/blood.V97.12.3951
  • Csernok E, Ludemann J, Gross WL, Bainton DF. Ultrastructural localization of proteinase 3, the target antigen of anti-cytoplasmic antibodies circulating in Wegener’s granulomatosis. Am J Pathol. 1990;137(5):1113–1120.
  • Cowland JB, Borregaard N. Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics. 1997;45(1):17–23. doi:10.1006/geno.1997.4896
  • Makowski GS, Ramsby ML. Gelatinolytic and fibrinolytic activity in fresh-frozen plasma. J Biomed Sci. 2004;11(4):531–533. doi:10.1007/BF02256103
  • Schauber J, Gallo RL. Expanding the roles of antimicrobial peptides in skin: alarming and arming keratinocytes. J Investig Dermatol. 2007;127(3):510–512. doi:10.1038/sj.jid.5700761
  • Lee HM, Shin DM, Kim KK, Lee JS, Paik TH, Jo EK. Roles of reactive oxygen species in CXCL8 and CCL2 expression in response to the 30-kDa antigen of Mycobacterium tuberculosis. J Clin Immunol. 2009;29(1):46–56. doi:10.1007/s10875-008-9222-3
  • Sun Y, Chen LH, Lu YS, et al. Identification of novel candidate genes in rosacea by bioinformatic methods. Cytokine. 2021;141:155444. doi:10.1016/j.cyto.2021.155444
  • Schaller M, Schofer H, Homey B, et al. State of the art: systemic rosacea management. J Dtsch Dermatol Ges. 2016;14(Suppl 6):29–37.
  • Su W, Li Z, Li F, Chen X, Wan Q, Liang D. Doxycycline-mediated inhibition of corneal angiogenesis: an MMP-independent mechanism. Invest Ophthalmol Vis Sci. 2013;54(1):783–788. doi:10.1167/iovs.12-10323
  • Kanada KN, Nakatsuji T, Gallo RL. Doxycycline indirectly inhibits proteolytic activation of tryptic kallikrein-related peptidases and activation of cathelicidin. J Investig Dermatol. 2012;132(5):1435–1442. doi:10.1038/jid.2012.14
  • Di Caprio R, Lembo S, Di Costanzo L, Balato A, Monfrecola G. Anti-inflammatory properties of low and high doxycycline doses: an in vitro study. Mediators Inflamm. 2015;2015:329418. doi:10.1155/2015/329418