73
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Localized and Systemic Inflammatory Mediators in a Murine Acute Mastitis Model

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 4053-4067 | Published online: 21 Aug 2021

References

  • Hughes K, Watson CJ. The mammary microenvironment in mastitis in humans, dairy ruminants, rabbits and rodents: a one health focus. J Mammary Gland Biol Neoplasia. 2018;23(1–2):27–41. doi:10.1007/s10911-018-9395-1
  • Lambe M, Johansson AL, Altman D, Eloranta S. Mastitis and the risk of breast cancer. Epidemiology. 2009;20(5):747–751. doi:10.1097/EDE.0b013e3181adbb1e
  • Chang CM, Lin MC, Yin WY. Risk of breast cancer in women with non-lactational mastitis. Sci Rep. 2019;9(1):15587. doi:10.1038/s41598-019-52046-3
  • Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003;34(5):475–491. doi:10.1051/vetres:2003027
  • Rollin E, Dhuyvetter KC, Overton MW. The cost of clinical mastitis in the first 30 days of lactation: an economic modeling tool. Prev Vet Med. 2015;122(3):257–264. doi:10.1016/j.prevetmed.2015.11.006
  • Aghamohammadi M, Haine D, Kelton DF, et al. Herd-level mastitis-associated costs on canadian dairy farms. Front Vet Sci. 2018;5:100. doi:10.3389/fvets.2018.00100
  • Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q. 2007;29(1):18–31. doi:10.1080/01652176.2007.9695224
  • Houben EH, Dijkhuizen AA, Van Arendonk JA, Huirne RB. Short-and long-term production losses and repeatability of clinical mastitis in dairy cattle. J Dai Sci. 1993;76(9):2561–2578. doi:10.3168/jds.S0022-0302(93)77591-8
  • Pyörälä S, Syväjärvi J. Bovine acute mastitis part I. Clinical aspects and parameters of inflammation in mastitis caused by different pathogens. J Vet Med, Series B. 1987;34(1‐10):573–584. doi:10.1111/j.1439-0450.1987.tb00438.x
  • Ericsson Unnerstad H, Lindberg A, Persson Waller K, et al. Microbial aetiology of acute clinical mastitis and agent-specific risk factors. Vet Microbiol. 2009;137(1–2):90–97. doi:10.1016/j.vetmic.2008.12.005
  • Shangraw EM, Rodrigues RO, Witzke MC, Choudhary RK, Zhao F-Q, McFadden TB. Intramammary lipopolysaccharide infusion induces local and systemic effects on milk components in lactating bovine mammary glands. J Dairy Sci. 2020;103(8):7487–7497. doi:10.3168/jds.2019-18022
  • Siivonen J, Taponen S, Hovinen M, et al. Impact of acute clinical mastitis on cow behaviour. Appl Anim Behav Sci. 2011;132(3–4):101–106. doi:10.1016/j.applanim.2011.04.005
  • Ingman WV, Glynn DJ, Hutchinson MR. Inflammatory mediators in mastitis and lactation insufficiency. J Mammary Gland Biol Neoplasia. 2014;19(2):161–167. doi:10.1007/s10911-014-9325-9
  • Spitzer AJ, Tian Q, Choudhary RK, Zhao F-Q. Bacterial endotoxin induces oxidative stress and reduces milk protein expression and hypoxia in the mouse mammary gland. Oxid Med Cell Longev. 2020;2020:1–16. doi:10.1155/2020/3894309
  • Turk R, Piras C, Kovačić M, et al. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. J Proteom. 2012;75(14):4412–4428. doi:10.1016/j.jprot.2012.05.021
  • Spitzer AJ, Tian Q, Choudhary RK, Zhao FQ. Bacterial endotoxin induces oxidative stress and reduces milk protein expression and hypoxia in the mouse mammary gland. Oxid Med Cell Longev. 2020;2020:3894309.
  • Lambe M, Johansson AL, Altman D, Eloranta S. Mastitis and the risk of breast cancer. Epidemiology. 2009;20(5):747–751.
  • Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019;20:23. doi:10.3390/ijms20236008
  • Alluwaimi AM. The cytokines of bovine mammary gland: prospects for diagnosis and therapy. Res Vet Sci. 2004;77(3):211–222. doi:10.1016/j.rvsc.2004.04.006
  • Ohtsuka H, Kudo K, Mori K, et al. Acute phase response in naturally occurring coliform mastitis. J Vet Med Sci. 2001;63(6):675–678. doi:10.1292/jvms.63.675
  • Shuster DE, Kehrli ME, Stevens MG. Cytokine production during endotoxin-induced mastitis in lactating dairy cows. Am J Vet Res. 1993;54(1):80–85.
  • Nakajima Y, Mikami O, Yoshioka M, et al. Elevated levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) activities in the sera and milk of cows with naturally occurring coliform mastitis. Res Vet Sci. 1997;62(3):297–298. doi:10.1016/S0034-5288(97)90209-5
  • Notebaert S, Demon D, Vanden Berghe T, Vandenabeele P, Meyer E. Inflammatory mediators in Escherichia coli-induced mastitis in mice. Comp Immunol Microbiol Infect Dis. 2008;31(6):551–565. doi:10.1016/j.cimid.2007.10.004
  • Shao G, Tian Y, Wang H, Liu F, Xie G. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2015;29(2):263–268. doi:10.1016/j.intimp.2015.11.011
  • Nazemi S, Aalbaek B, Kjelgaard-Hansen M, Safayi S, Klaerke DA, Knight CH. Expression of acute phase proteins and inflammatory cytokines in mouse mammary gland following Staphylococcus aureus challenge and in response to milk accumulation. J Dairy Res. 2014;81(4):445–454. doi:10.1017/S0022029914000454
  • Trigo G, Dinis M, Franca A, et al. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis. J Med Microbiol. 2009;58(Pt 7):951–958. doi:10.1099/jmm.0.007385-0
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi:10.1093/bioinformatics/bts635
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–628. doi:10.1038/nmeth.1226
  • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106. doi:10.1186/gb-2010-11-10-r106
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Bioll Chem. 2019;401(1):183–199. doi:10.1515/hsz-2019-0344
  • Murata S, Takahama Y, Kasahara M, Tanaka K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 2018;19(9):923–931. doi:10.1038/s41590-018-0186-z
  • Reis J, Guan XQ, Kisselev AF, et al. LPS-induced formation of immunoproteasomes: TNF-α and nitric oxide production are regulated by altered composition of proteasome-active sites. Cell Biochem Biophy. 2011;60(1–2):77–88. doi:10.1007/s12013-011-9182-8
  • Qureshi AA, Guan XQ, Reis JC, et al. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis. 2012;11(1):76. doi:10.1186/1476-511X-11-76
  • Jamart C, Gomes AV, Dewey S, Deldicque L. Regulation of ubiquitin-proteasome and autophagy pathways after acute LPS and epoxomicin administration in mice. BMC Musculoskeletal Disord. 2014;15(1):1–13. doi:10.1186/1471-2474-15-166
  • Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–2582.
  • de Vries JE. Immunosuppressive and anti-inflammatory properties of interleukin 10. Annals Med. 1995;27(5):537–541. doi:10.3109/07853899509002465
  • Opal SM, DePalo VA. Anti-inflammatory cytokines. Chest. 2000;117(4):1162–1172. doi:10.1378/chest.117.4.1162
  • Grohmann U, Van Snick J, Campanile F, et al. IL-9 protects mice from Gram-negative bacterial shock: suppression of TNF-alpha, IL-12, and IFN-gamma, and induction of IL-10. J Immunol. 2000;164(8):4197–4203. doi:10.4049/jimmunol.164.8.4197
  • Pilette C, Ouadrhiri Y, Van Snick J, et al. IL-9 inhibits oxidative burst and TNF-alpha release in lipopolysaccharide-stimulated human monocytes through TGF-beta. J Immunol. 2002;168(8):4103–4111. doi:10.4049/jimmunol.168.8.4103
  • Gu B, Zhu Y, Zhu W, Miao J, Deng Y, Zou S. Retinoid protects rats against neutrophil-induced oxidative stress in acute experimental mastitis. Int Immunopharmacol. 2009;9(2):223–229. doi:10.1016/j.intimp.2008.11.014
  • Xiaoyu H, Si H, Li S, et al. Induction of heme oxygenas-1 attenuates NLRP3 inflammasome activation in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2017;52:185–190. doi:10.1016/j.intimp.2017.09.007
  • Okamoto T, Gohil K, Finkelstein EI, Bove P, Akaike T. Multiple contributing roles for NOS2 in LPS-induced acute airway inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2004;286(1):L198–209. doi:10.1152/ajplung.00136.2003
  • King SM. Dynein-independent functions of DYNLL1/LC8: redox state sensing and transcriptional control. Sci Signal. 2008;1(47):pe51. doi:10.1126/scisignal.147pe51
  • Sundar UM, Ugusman A, Chua HK, Latip J, Aminuddin A. Piper sarmentosum promotes endothelial nitric oxide production by reducing asymmetric dimethylarginine in tumor necrosis factor-alpha-induced human umbilical vein endothelial cells. Front Pharmacol. 2019;10:1033. doi:10.3389/fphar.2019.01033
  • Bouchard L, Blais S, Desrosiers C, Zhao X, Lacasse P. Nitric oxide production during endotoxin-induced mastitis in the cow. J Dairy Sci. 1999;82(12):2574–2581. doi:10.3168/jds.S0022-0302(99)75512-8
  • Xu T, Deng R, Li X, Zhang Y, Gao M-Q. RNA-seq analysis of different inflammatory reactions induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells. Microb Pathog. 2019;130:169–177. doi:10.1016/j.micpath.2019.03.015
  • Yousef G, Yacoub G, Polymeris M-E, Popalis C, Soosaipillai A, Diamandis E. Kallikrein gene downregulation in breast cancer. Br J Cancer. 2004;90(1):167–172. doi:10.1038/sj.bjc.6601451
  • Ehrenfeld P, Manso L, Pavicic MF, et al. Bioregulation of kallikrein-related peptidases 6, 10 and 11 by the kinin B1 receptor in breast cancer cells. Anticancer Res. 2014;34(12):6925–6938.
  • Cao X-Y, Zhang -X-X, Yang M-W, et al. Aberrant upregulation of KLK10 promotes metastasis via enhancement of EMT and FAK/SRC/ERK axis in PDAC. Biochem Biophys Res Commun. 2018;499(3):584–593. doi:10.1016/j.bbrc.2018.03.194
  • Marcotte R, Sayad A, Brown KR, et al. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164(1–2):293–309. doi:10.1016/j.cell.2015.11.062
  • Ecimovic P, Murray D, Doran P, McDonald J, Lambert D, Buggy D. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene. Br J Anaesth. 2011;107(6):916–923. doi:10.1093/bja/aer259
  • Yoda T, McNamara KM, Miki Y, et al. KLF15 in breast cancer: a novel tumor suppressor? Cell Oncol. 2015;38(3):227–235. doi:10.1007/s13402-015-0226-8
  • Cao S, Iyer JK, Lin V. Identification of tetratricopeptide repeat domain 9, a hormonally regulated protein. Biochem Biophys Res Commun. 2006;345(1):310–317. doi:10.1016/j.bbrc.2006.04.091
  • Neville MC, Allen JC, Watters C. The mechanisms of milk secretion. In: Neville MC, Neifert MR, editors. Lactation: Physiology, Nutrition, and Breast-Feeding. New York: Plenum; 1983:49–92.
  • Johnzon CF, Dahlberg J, Gustafson AM, et al. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach. Front Immunol. 2018;9:1487. doi:10.3389/fimmu.2018.01487