59
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Exploration of Potential Molecular Targets of Dexmedetomidine in the Intestinal Repair of Burnt Rats

, , , & ORCID Icon
Pages 3197-3206 | Published online: 13 Jul 2021

References

  • Gross-Amat O, Guillen M, Salmon D, Nataf S, Auxenfans C. Characterization of a topically testable model of burn injury on human skin explants. Int J Mol Sci. 2020;21(18):6956. doi:10.3390/ijms21186956
  • He S, Alonge O, Agrawal P, et al. Epidemiology of burns in rural Bangladesh: an update. Int J Environ Res Public Health. 2017;14(4):381. doi:10.3390/ijerph14040381
  • He W, Wang Y, Wang P, Wang F. Intestinal barrier dysfunction in severe burn injury. Burns Trauma. 2019;7:24. doi:10.1186/s41038-019-0162-3
  • Wang P, Feng YH, Wang SB, Wang Y, Huang YL, Wang FJ. [Significance of intestinal fatty acid binding protein in evaluation of intestinal barrier dysfunction of mice at early stage of severe burn injury]. Zhonghua Shao Shang Za Zhi. 2019;35(6):459–463. Chinese. doi:10.3760/cma.j.issn.1009-2587.2019.06.012
  • Yang X, Chen J, Bai H, et al. Inhibition of Na+/H+ exchanger 1 by cariporide reduces burn-induced intestinal barrier breakdown. Burns. 2013;39(8):1557–1564. doi:10.1016/j.burns.2013.04.007
  • Song Y, Li Y, Xiao Y, et al. Neutralization of interleukin-17A alleviates burn-induced intestinal barrier disruption via reducing pro-inflammatory cytokines in a mouse model. Burns Trauma. 2019;7:37. doi:10.1186/s41038-019-0177-9
  • Kraehenbuhl JP, Pringault E, Neutra MR. Review article: intestinal epithelia and barrier functions. Aliment Pharmacol Ther. 1997;11(Suppl 3):3–9. doi:10.1111/j.1365-2036.1997.tb00803.x
  • Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. Expert Rev Gastroenterol Hepatol. 2017;11(9):821–834. doi:10.1080/17474124.2017.1343143
  • Branca JJV, Gulisano M, Nicoletti C. Intestinal epithelial barrier functions in ageing. Ageing Res Rev. 2019;54:100938. doi:10.1016/j.arr.2019.100938
  • Al-Ghoul WM, Khan M, Fazal N, Sayeed MM. Mechanisms of postburn intestinal barrier dysfunction in the rat: roles of epithelial cell renewal, E-cadherin, and neutrophil extravasation. Crit Care Med. 2004;32(8):1730–1739. doi:10.1097/01.CCM.0000132896.62368.01
  • Feng Y, Huang Y, Wang Y, Wang P, Wang F. Severe burn injury alters intestinal microbiota composition and impairs intestinal barrier in mice. Burns Trauma. 2019;7:20. doi:10.1186/s41038-019-0156-1
  • Asmussen S, Maybauer DM, Fraser JF, Jennings K, George S, Maybauer MO. A meta-analysis of analgesic and sedative effects of dexmedetomidine in burn patients. Burns. 2013;39(4):625–631. doi:10.1016/j.burns.2013.01.008
  • Lee S. Dexmedetomidine: present and future directions. Korean J Anesthesiol. 2019;72(4):323–330. doi:10.4097/kja.19259
  • Skrobik Y, Duprey MS, Hill NS, Devlin JW. Low-dose nocturnal dexmedetomidine prevents ICU delirium. A randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2018;197(9):1147–1156. doi:10.1164/rccm.201710-1995OC
  • Moc C, Taylor AE, Chesini GP, et al. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovasc Res. 2015;105(2):160–170. doi:10.1093/cvr/cvu243
  • Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central alpha2A adrenoceptor. Brain Behav Immun. 2021;91:296–314. doi:10.1016/j.bbi.2020.10.008
  • Geze S, Cekic B, Imamoglu M, et al. Use of dexmedetomidine to prevent pulmonary injury after pneumoperitoneum in ventilated rats. Surg Laparosc Endosc Percutan Tech. 2012;22(5):447–453. doi:10.1097/SLE.0b013e31826183df
  • Kaye AD, Chernobylsky DJ, Thakur P, et al. Dexmedetomidine in Enhanced Recovery After Surgery (ERAS) protocols for postoperative pain. Curr Pain Headache Rep. 2020;24(5):21. doi:10.1007/s11916-020-00853-z
  • Yeh YC, Wu CY, Cheng YJ, et al. Effects of dexmedetomidine on intestinal microcirculation and intestinal epithelial barrier in endotoxemic rats. Anesthesiology. 2016;125(2):355–367. doi:10.1097/ALN.0000000000001135
  • Qin C, Jiang Y, Chen X, et al. Dexmedetomidine protects against burn-induced intestinal barrier injury via the MLCK/p-MLC signalling pathway. Burns. 2021. doi:10.1016/j.burns.2021.01.017
  • Sun Y, Gao Q, Wu N, Li SD, Yao JX, Fan WJ. Protective effects of dexmedetomidine on intestinal ischemia-reperfusion injury. Exp Ther Med. 2015;10(2):647–652. doi:10.3892/etm.2015.2561
  • Zhang XY, Liu ZM, Wen SH, et al. Dexmedetomidine administration before, but not after, ischemia attenuates intestinal injury induced by intestinal ischemia-reperfusion in rats. Anesthesiology. 2012;116(5):1035–1046. doi:10.1097/ALN.0b013e3182503964
  • Serafini S, Santos MM, Aoun Tannuri AC, et al. Is hematoxylin-eosin staining in rectal mucosal and submucosal biopsies still useful for the diagnosis of Hirschsprung disease? Diagn Pathol. 2017;12(1):84. doi:10.1186/s13000-017-0673-9
  • Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN. Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Arch Surg. 1970;101(4):478–483. doi:10.1001/archsurg.1970.01340280030009
  • Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–362. doi:10.1038/nmeth.1322
  • Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D13. doi:10.1093/nar/gky1131
  • Peterson CY, Costantini TW, Loomis WH, et al. Toll-like receptor-4 mediates intestinal barrier breakdown after thermal injury. Surg Infect (Larchmt). 2010;11(2):137–144. doi:10.1089/sur.2009.053
  • Mahmoud M, Barbi E, Mason KP. Dexmedetomidine: what’s new for pediatrics? A narrative review. J Clin Med. 2020;9(9):2724. doi:10.3390/jcm9092724
  • Van Spaendonk H, Ceuleers H, Witters L, et al. Regulation of intestinal permeability: the role of proteases. World J Gastroenterol. 2017;23(12):2106–2123. doi:10.3748/wjg.v23.i12.2106
  • Odenwald MA, Turner JR. Intestinal permeability defects: is it time to treat? Clin Gastroenterol Hepatol. 2013;11(9):1075–1083. doi:10.1016/j.cgh.2013.07.001
  • Schoultz I, Keita AV. The intestinal barrier and current techniques for the assessment of gut permeability. Cells. 2020;9(8):1909. doi:10.3390/cells9081909
  • Meng Y, Zhang Y, Liu M, et al. Evaluating intestinal permeability by measuring plasma endotoxin and diamine oxidase in children with acute lymphoblastic leukemia treated with high-dose methotrexate. Anticancer Agents Med Chem. 2016;16(3):387–392. doi:10.2174/1871520615666150812125955
  • Li BR, Wu J, Li HS, et al. In vitro and in vivo approaches to determine intestinal epithelial cell permeability. J Vis Exp. 2018;140. doi:10.3791/57032
  • Honzawa Y, Nakase H, Matsuura M, Chiba T. Clinical significance of serum diamine oxidase activity in inflammatory bowel disease: importance of evaluation of small intestinal permeability. Inflamm Bowel Dis. 2011;17(2):E23–5. doi:10.1002/ibd.21588
  • Wang Y, An Y, Ma W, et al. 27-hydroxycholesterol contributes to cognitive deficits in APP/PS1 transgenic mice through microbiota dysbiosis and intestinal barrier dysfunction. J Neuroinflammation. 2020;17(1):199. doi:10.1186/s12974-020-01873-7
  • Guo Y, Li H, Liu Z, et al. Impaired intestinal barrier function in a mouse model of hyperuricemia. Mol Med Rep. 2019;20(4):3292–3300. doi:10.3892/mmr.2019.10586
  • Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19(11):697–712. doi:10.1038/s41580-018-0040-z
  • Ghouzali I, Lemaitre C, Bahlouli W, et al. Targeting immunoproteasome and glutamine supplementation prevent intestinal hyperpermeability. Biochim Biophys Acta Gen Subj. 2017;1861(1):3278–3288. doi:10.1016/j.bbagen.2016.08.010
  • Wang CY, Li CY, Hsu HP, et al. PSMB5 plays a dual role in cancer development and immunosuppression. Am J Cancer Res. 2017;7(11):2103–2120.
  • Li J, Wang S, Bai J, et al. Novel role for the immunoproteasome subunit PSMB10 in angiotensin II-induced atrial fibrillation in mice. Hypertension. 2018;71(5):866–876. doi:10.1161/HYPERTENSIONAHA.117.10390
  • Kyrychenko VO, Nagibin VS, Tumanovska LV, et al. Knockdown of PSMB7 induces autophagy in cardiomyocyte cultures: possible role in endoplasmic reticulum stress. Pathobiology. 2014;81(1):8–14. doi:10.1159/000350704
  • Schmidt N, Gonzalez E, Visekruna A, et al. Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut. 2010;59(7):896–906. doi:10.1136/gut.2009.203554
  • Waku T, Katayama H, Hiraoka M, et al. NFE2L1 and NFE2L3 complementarily maintain basal proteasome activity in cancer cells through CPEB3-mediated translational repression. Mol Cell Biol. 2020;40(14). doi:10.1128/MCB.00010-20.
  • Basler M, Dajee M, Moll C, Groettrup M, Kirk CJ. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J Immunol. 2010;185(1):634–641. doi:10.4049/jimmunol.0903182
  • Inoue S, Nakase H, Matsuura M, et al. The effect of proteasome inhibitor MG132 on experimental inflammatory bowel disease. Clin Exp Immunol. 2009;156(1):172–182. doi:10.1111/j.1365-2249.2008.03872.x
  • Coeffier M, Gloro R, Boukhettala N, et al. Increased proteasome-mediated degradation of occludin in irritable bowel syndrome. Am J Gastroenterol. 2010;105(5):1181–1188. doi:10.1038/ajg.2009.700