73
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Duzhong Fang Attenuates the POMC-Derived Neuroinflammation in Parkinsonian Mice

, , , , , , , & show all
Pages 3261-3276 | Published online: 23 Jul 2021

References

  • Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124(8):901–905. doi:10.1007/s00702-017-1686-y
  • Fabbri M, Reimão S, Carvalho M, et al. Substantia nigra neuromelanin as an imaging biomarker of disease progression in Parkinson’s disease. J Parkinsons Dis. 2017;7(3):491–501. doi:10.3233/JPD-171135
  • Dickson DW. Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 2018;46(Suppl 1):S30–S33. doi:10.1016/j.parkreldis.2017.07.033
  • Stojkovska I, Wagner BM, Morrison BE. Parkinson’s disease and enhanced inflammatory response. Exp Biol Med. 2015;240(11):1387–1395. doi:10.1177/1535370215576313
  • Collins LM, Toulouse A, Connor TJ, Nolan YM. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology. 2012;62(7):2154–2168. doi:10.1016/j.neuropharm.2012.01.028
  • Elzbieta J, Laura B, Carta AR, Phagocytosis M. Its regulation: a therapeutic target in Parkinson’s disease? Front Mol Neurosci. 2018;11:1–7. doi:10.3389/fnmol.2018.00144
  • Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23(6):915–926. doi:10.1038/cdd.2015.172
  • Nau R, Ribes S, Djukic M, Eiffert H. Strategies to increase the activity of microglia as efficient protectors of the brain against infections. Front Cell Neurosci. 2014;8:138. doi:10.3389/fncel.2014.00138
  • Maatouk L, Compagnion AC, Sauvage MC, et al. TLR9 activation via microglial glucocorticoid receptors contributes to degeneration of midbrain dopamine neurons. Nat Commun. 2018;9(1):2450. doi:10.1038/s41467-018-04569-y
  • Rees K, Stowe R, Patel S, et al. Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson’s disease: evidence from observational studies. Cochrane Database Syst Rev. 2011;11:CD008454. doi:10.1002/14651858
  • Yacoubian TA, Standaert DG. Targets for neuroprotection in Parkinson’s disease. Biochim Biophys Acta. 2009;1792(7):676–687. doi:10.1016/j.bbadis.2008.09.009
  • Ren L, Yi J, Yang J, Li P, Cheng X, Mao P. Nonsteroidal anti-inflammatory drugs use and risk of Parkinson disease: a dose-response meta-analysis. Medicine. 2018;97(37):e12172. doi:10.1097/MD.0000000000012172
  • Poly TN, Islam MMR, Yang HC, Li YJ. Non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease in the elderly population: a meta-analysis. Eur J Clin Pharmacol. 2019;75(1):99–108. doi:10.1007/s00228-018-2561-y
  • Cayero-Otero MD, Espinosa-Oliva AM, Herrera AJ, et al. Potential use of nanomedicine for the anti-inflammatory treatment of neurodegenerative diseases. Curr Pharm Des. 2018;24(14):1589–1616. doi:10.2174/1381612824666180403113015
  • Mir RH, Shah AJ, Mohi-Ud-Din R, et al. Natural anti-inflammatory compounds as drug candidates in Alzheimer’s disease. Curr Med Chem. 2020;30. doi:10.2174/0929867327666200730213215
  • Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol. 2020;35(11):1229–1250. doi:10.14670/HH-18-239
  • Wu HZ, Fang ZQ, Cheng PJ. The theory of Yin and Yang. U Chi L Rev. 2013;1:33–46. doi:10.1142/9781938134296_0003
  • Fan S, Yin Q, Li D, et al. Anti-neuroinflammatory effects of Eucommia ulmoides Oliv. In a Parkinson’s mouse model through the regulation of p38/JNK-Fosl2 gene expression. J Ethnopharmacol. 2020;260:113016. doi:10.1016/j.jep.2020.113016
  • National Pharmacopoeia Commission. The Pharmacopoeia of the People’s Republic of China (Part I). Beijing: China Medical Science and Technology Press; 2020.
  • García E, Villeda-Hernández J, Pedraza-Chaverrí J, Maldonado PD, Santamaría A. S-allylcysteine reduces the MPTP-induced striatal cell damage via inhibition of pro-inflammatory cytokine tumor necrosis factor-α and inducible nitric oxide synthase expressions in mice. Phytomedicine. 2010;18:65–73. doi:10.1016/j.phymed.2010.04.004
  • Huang D, Wang Z, Tong J, et al. Long-term changes in the nigrostriatal pathway in the MPTP mouse model of Parkinson’s disease. Neuroscience. 2018;369:303–313. doi:10.1016/j.neuroscience.2017.11.041
  • Wang CT, Mao CJ, Zhang XQ, et al. Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Mol Pain. 2017;13:1744806917691525. doi:10.1177/1744806917691525
  • Luo FC, Wang SD, Qi L, Song JY, Lv T, Bai J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J Ethnopharmacol. 2011;133(2):448–453. doi:10.1016/j.jep.2010.10.017
  • Wang W, Shi L, Xie Y, et al. SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res. 2004;48(2):195–202. doi:10.1016/j.neures.2003.10.012
  • Perez-Pardo P, Dodiya HB, Engen PA, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut. 2019;68(5):829–843. doi:10.1136/gutjnl-2018-316844
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi:10.1006/meth.2001.1262
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Cebrián C, Zucca FA, Mauri P, et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun. 2014;5:3633. doi:10.1038/ncomms4633
  • Yoon KW, Yang HS, Kim YM, et al. CIB1 protects against MPTP-induced neurotoxicity through inhibiting ASK1. Sci Rep. 2017;7(1):12178. doi:10.1038/s41598-017-12379-3
  • Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76(1):33–50. doi:10.1016/j.neuron.2012.09.023
  • Franceschelli S, Lanuti P, Ferrone A, et al. Modulation of apoptotic cell death and neuroprotective effects of glutathione-l-dopa codrug against H2O2-induced cellular toxicity. Antioxidants. 2019;8(8):319. doi:10.3390/antiox8080319
  • Butkovich LM, Houser MC, Tansey MG. α-synuclein and noradrenergic modulation of immune cells in Parkinson’s disease pathogenesis. Front Neurosci. 2018;12:626. doi:10.3389/fnins.2018.00626
  • Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia: an essential link between degeneration and regeneration. Brain. 2009;132(Pt 2):288–295. doi:10.1093/brain/awn109
  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106(6):518–526. doi:10.1007/s00401-003-0766-2
  • Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–397. doi:10.1016/S1474-4422(09)70062-6
  • Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011;26(1):6–17. doi:10.1002/mds.23455
  • Herrero MT, Estrada C, Maatouk L, Vyas S. Inflammation in Parkinson’s disease: role of glucocorticoids. Front Neuroanat. 2015;9:32. doi:10.3389/fnana.2015.00032
  • Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39(1):151–170. doi:10.1016/0306-4522(90)90229-w
  • Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci. 2000;20(16):6309–6316. doi:10.1523/JNEUROSCI.20-16-06309.2000
  • Barcia C, Ros CM, Ros-Bernal F, et al. Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. J Neuroimmunol. 2013;261(1–2):60–66. doi:10.1016/j.jneuroim.2013.05.001
  • Mass E, Jacome-Galarza CE, Blank T, et al. A somatic mutation in erythro-myeloid progenitors causes neurodegenerative disease. Nature. 2017;549(7672):389–393. doi:10.1038/nature23672
  • Zhao X, Liao Y, Morgan S, et al. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Rep. 2018;22(8):2080–2093. doi:10.1016/j.celrep.2018.02.004
  • Wu J, Ding DH, Li QQ, Wang XY, Sun YY, Li LJ. Lipoxin A4 regulates lipopolysaccharide-induced BV2 microglial activation and differentiation via the notch signaling pathway. Front Cell Neurosci. 2019;13:19. doi:10.3389/fncel.2019.00019
  • Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15(5):300–312. doi:10.1038/nrn3722
  • Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21. doi:10.1016/j.expneurol.2011.09.033
  • Michels M, Abatti MR, Ávila P, et al. Characterization and modulation of microglial phenotypes in an animal model of severe sepsis. J Cell Mol Med. 2020;24(1):88–97. doi:10.1111/jcmm.14606
  • Kitagawa Y, Nakaso K, Horikoshi Y, et al. System xc- in microglia is a novel therapeutic target for post-septic neurological and psychiatric illness. Sci Rep. 2019;9(1):7562. doi:10.1038/s41598-019-44006-8
  • Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol. 2017;13(7):420–433. doi:10.1038/nrneurol.2017.69
  • Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol. 2015;11(1):56–64. doi:10.1038/nrneurol.2014.207
  • Dai D, Yuan J, Wang Y, Xu J, Mao C, Xiao XY. Peli1 controls the survival of dopaminergic neurons through modulating microglia-mediated neuroinflammation. Sci Rep. 2019;9(1):8034. doi:10.1038/s41598-019-44573-w
  • Brown GC. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans. 2007;35(Pt 5):1119–1121. doi:10.1042/BST0351119
  • Gao HM, Liu B, Zhang W, Hong JS. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J. 2003;17(13):1954–1956. doi:10.1096/fj.03-0109fje
  • Lecca D, Janda E, Mulas G, et al. Boosting phagocytosis and anti-inflammatory phenotype in microglia mediates neuroprotection by PPARγ agonist MDG548 in Parkinson’s disease models. Br J Pharmacol. 2018;175(16):3298–3314. doi:10.1111/bph.14214
  • Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69. doi:10.1038/nrn2038
  • Rojanathammanee L, Murphy EJ, Combs CK. Expression of mutant alpha-synuclein modulates microglial phenotype in vitro. J Neuroinflammation. 2011;8:44. doi:10.1186/1742-2094-8-44
  • Nikolakopoulou AM, Dutta R, Chen Z, Miller RH, Trapp BD. Activated microglia enhance neurogenesis via trypsinogen secretion. Proc Natl Acad Sci U S A. 2013;110(21):8714–8719. doi:10.1073/pnas.1218856110
  • Truettner JS, Bramlett HM, Dietrich WD. Posttraumatic therapeutic hypothermia alters microglial and macrophage polarization toward a beneficial phenotype. J Cereb Blood Flow Metab. 2017;37(8):2952–2962. doi:10.1177/0271678X16680003
  • Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci. 2005;29(3):381–393. doi:10.1016/j.mcn.2005.03.005
  • Zhou X, Spittau B, Krieglstein K. TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. J Neuroinflammation. 2012;9:210. doi:10.1186/1742-2094-9-210
  • Kroner A, Greenhalgh AD, Zarruk JG, et al. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. 2014;83(5):1098–1116. doi:10.1016/j.neuron.2014.07.027
  • Benson MJ, Manzanero S, Borges K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia. 2015;56(6):895–905. doi:10.1111/epi.12960
  • Zhang X, van den Pol AN. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat Neurosci. 2016;19(10):1341–1347. doi:10.1038/nn.4372
  • Nappi G, Petraglia F, Martignoni E, et al. Beta-Endorphin cerebrospinal fluid decrease in untreated parkinsonian patients. Neurology. 1985;35(9):1371–1374. doi:10.1212/wnl.35.9.1371
  • Sandyk R. Pro-opiomelanocortin (POMC) processing in Parkinson’s disease. Int J Neurosci. 1989;46(3–4):201–204. doi:10.3109/00207458908986258
  • Ropelle ER, Flores MB, Cintra DE, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition. PLoS Biol. 2010;8(8):e1000465. doi:10.1371/journal.pbio.1000465
  • Shi X, Wang X, Li Q, et al. Nuclear factor κB (NF-κB) suppresses food intake and energy expenditure in mice by directly activating the Pomcpromoter. Diabetologia. 2013;56(4):925–936. doi:10.1007/s00125-013-2831-2
  • Pereda MP, Lohrer P, Kovalovsky D, et al. Interleukin-6 is inhibited by glucocorticoids and stimulates ACTH secretion and POMC expression in human corticotroph pituitary adenomas. Exp Clin Endocrinol Diabetes. 2000;108(3):202–207. doi:10.1055/s-2000-7887
  • Sergeyev V, Broberger C, Hökfelt T. Effect of LPS administration on the expression of POMC, NPY, galanin, CART and MCH mRNAs in the rat hypothalamus. Brain Res Mol Brain Res. 2001;90(2):93–100. doi:10.1016/s0169-328x(01)00088-2
  • Gantz I, Fong TM. The melanocortin system. Am J Physiol Endocrinol Metab. 2003;284(3):E468. doi:10.1152/ajpendo.00434.2002
  • Catania A, Lonati C, Sordi A, et al. The melanocortin system in control of inflammation. Thescientificworldjournal. 2014;10(1):1840. doi:10.1100/tsw.2010.173
  • Wang M, Zhi D, Wang H, et al. TAT-HSA-α-MSH fusion protein with extended half-life inhibits tumor necrosis factor-α in brain inflammation of mice. Appl Microbiol Biotechnol. 2016;100(12):5353–5361. doi:10.1007/s00253-015-7251-4
  • Carniglia L, Ramírez D, Durand D, et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm. 2017;2017:5048616. doi:10.1155/2017/5048616