79
Views
4
CrossRef citations to date
0
Altmetric
Review

A Potential Role of Vitamin D on Platelet Leukocyte Aggregation and Pathological Events in Sepsis: An Updated Review

Pages 3651-3664 | Published online: 30 Jul 2021

References

  • Tintut Y, Demer LL. Potential impact of the steroid hormone, vitamin D, on the vasculature vitamin D-hormones and cardiovascular disease. Am Heart J. 2021;239:147–153. doi:10.1016/j.ahj.2021.05.012
  • Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev. 2016;96:365–408. doi:10.1152/physrev.00014.2015
  • Tripkovic L, Lambert H, Hart K, et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr. 2012;95:1357–1364. doi:10.3945/ajcn.111.031070
  • Siddiqui M, Manansala JS, Abdulrahman HA, et al. Immune modulatory effects of vitamin D on viral infections. Nutrients. 2020;12:2879. doi:10.3390/nu12092879
  • Demer LL, Hsu JJ, Tintut Y. Steroid hormone vitamin D: implications for cardiovascular disease. Circ Res. 2018;122:1576–1585. doi:10.1161/CIRCRESAHA.118.311585
  • Dattola A, Silvestri M, Bennardo L, et al. Role of vitamins in skin health: a systematic review. Curr Nutr Rep. 2020;1–10.
  • Aranow C. Vitamin D and the immune system. J Investig Med. 2011;59:881–886. doi:10.2310/JIM.0b013e31821b8755
  • Grant AH. The effect of Rachitic diets on experimental tuberculosis: III. resistance to tuberculosis decreased by adding codliver oil. Am Rev Tuberc. 1930;21:102–114.
  • Banyai AL. Topical application of codliver oil in tuberculosis: a preliminary report. Am Rev Tuberc. 1937;36:250–258.
  • Coulter JS, Carter HA. The treatment of pulmonary tuberculosis by ultraviolet radiation. J Am Med Assoc. 1935;105:171–174. doi:10.1001/jama.1935.02760290005003
  • Gerstenberger HJ, Burhans CW. Treatment of extensive pulmonary tuberculosis with ultraviolet rays. Am J Dis Child. 1927;33:54–73.
  • Finsen NR. Phototherapy: 1. The Chemical Rays of Light and Smallpox, 2. Light as a Stimulant, 3. The Treatment of Lupus Vulgarisby Concentrated Chemical Rays. Arnold; 1901.
  • Lang PO, Aspinall R. Vitamin D status and the host resistance to infections: what it is currently (not) understood. Clin Ther. 2017;39:930–945. doi:10.1016/j.clinthera.2017.04.004
  • Semon HC. The treatment of lupus erythematosus by krysolgan. Br Med J. 1927;2(3475):258. doi:10.1136/bmj.2.3475.258
  • Khajavi A, Amirhakimi G. The rachoitic lung: pulmonary findings in 30 infants and children with malnutritional rickets. Clin Pediatr (Phila). 1977;16:36–38. doi:10.1177/000992287701600106
  • Laaksi I, Ruohola J-P, Tuohimaa P, et al. An association of serum vitamin D concentrations< 40 nmol/L with acute respiratory tract infection in young Finnish men. Am J Clin Nutr. 2007;86:714–717.
  • Upala S, Sanguankeo A, Permpalung N. Significant association between vitamin D deficiency and sepsis: a systematic review and meta-analysis. BMC Anesthesiol. 2015;15:1–11. doi:10.1186/s12871-015-0063-3
  • Zhou W, Mao S, Wu L, Yu J. Association between vitamin D status and sepsis. Clin Lab. 2018;64:451–460. doi:10.7754/Clin.Lab.2017.170919
  • McNally JD, Leis K, Matheson LA, Karuananyake C, Sankaran K, Rosenberg AM. Vitamin D deficiency in young children with severe acute lower respiratory infection. Pediatr Pulmonol. 2009;44:981–988. doi:10.1002/ppul.21089
  • Kempker JA, Han JE, Tangpricha V, Ziegler TR, Martin GS. Vitamin D and sepsis: an emerging relationship. Dermato-Endocrinology. 2012;4:101–108. doi:10.4161/derm.19859
  • Yamshchikov A, Desai N, Blumberg H, Ziegler T, Tangpricha V. Vitamin D for treatment and prevention of infectious diseases: a systematic review of randomized controlled trials. Endocr Pract. 2009;15:438–449. doi:10.4158/EP09101.ORR
  • F Gunville C, M Mourani P, A Ginde A. The role of vitamin D in prevention and treatment of infection. Inflamm Allergy Drug Targets. 2013;12:239–245.
  • Ginde AA, Mansbach JM, Camargo CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2009;169:384–390. doi:10.1001/archinternmed.2008.560
  • Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356.
  • Jolliffe DA, Camargo CA Jr, Sluyter JD, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–292. doi:10.1016/S2213-8587(21)00051-6
  • Shojaei M, Sabzeghabaei A, Barhagh HV, Soltani S. The correlation between serum level of vitamin D and outcome of sepsis patients; a cross-sectional study. Arch Acad Emerg Med. 2019;7.
  • El-Gendy FM, Khattab AA, Naser RG, Abdel-Aziz AA. Association between vitamin D deficiency and sepsis in pediatric ICU. Menoufia Med J. 2021;34:210. doi:10.4103/mmj.mmj_210_19
  • Li Y, Ding S. Serum 25-Hydroxyvitamin D and the risk of mortality in adult patients with Sepsis: a meta-analysis. BMC Infect Dis. 2020;20:1–10.
  • Trongtrakul K, Feemuchang C. Prevalence and association of vitamin D deficiency and mortality in patients with severe sepsis. Int J Gen Med. 2017;10:415. doi:10.2147/IJGM.S147561
  • Loftus TJ, Mira JC, Ozrazgat-Baslanti T, et al. Sepsis and critical illness research center investigators: protocols and standard operating procedures for a prospective cohort study of sepsis in critically ill surgical patients. BMJ Open. 2017;7:e015136. doi:10.1136/bmjopen-2016-015136
  • Leaf DE, Raed A, Donnino MW, Ginde AA, Waikar SS. Randomized controlled trial of calcitriol in severe sepsis. Am J Respir Crit Care Med. 2014;190:533–541. doi:10.1164/rccm.201405-0988OC
  • Quraishi SA, De Pascale G, Needleman JS, et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: a randomized, placebo-controlled trial. Crit Care Med. 2015;43:1928. doi:10.1097/CCM.0000000000001148
  • Amrein K, Schnedl C, Holl A, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312:1520–1530. doi:10.1001/jama.2014.13204
  • Han JE, Jones JL, Tangpricha V, et al. High dose vitamin D administration in ventilated intensive care unit patients: a pilot double blind randomized controlled trial. J Clin Transl Endocrinol. 2016;4:59–65. doi:10.1016/j.jcte.2016.04.004
  • Miri M, Kouchek M, Dahmardeh AR, Sistanizad M. Effect of high-dose vitamin D on duration of mechanical ventilation in ICU patients. Iran J Pharm Res. 2019;18:1067.
  • Amrein K, Sourij H, Wagner G, et al. Short-term effects of high-dose oral vitamin D3 in critically ill vitamin D deficient patients: a randomized, double-blind, placebo-controlled pilot study. Crit Care. 2011;15:1–7. doi:10.1186/cc10120
  • National Heart, L.; Network, B.I.P.C.T. Early high-dose vitamin D3 for critically ill, vitamin D–deficient patients. N Engl J Med. 2019;381:2529–2540. doi:10.1056/NEJMoa1911124
  • Marik PE, Taeb AM. SIRS, qSOFA and new sepsis definition. J Thorac Dis. 2017;9:943. doi:10.21037/jtd.2017.03.125
  • Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395:200–211. doi:10.1016/S0140-6736(19)32989-7
  • Dave M, Barry S, Coulthard P, et al. An evaluation of sepsis in dentistry. Br Dent J. 2021;230:351–357. doi:10.1038/s41415-021-2724-6
  • Daniels R. Sepsis: the silent killer we should be stopping. Int J First Aid Educ. 2018;1:23. doi:10.21038/ijfa.2018.0005
  • Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009–2014. JAMA. 2017;318:1241–1249. doi:10.1001/jama.2017.13836
  • Plevin R, Callcut R. Update in sepsis guidelines: what is really new? Trauma Surg Acute Care Open. 2017;2:e000088. doi:10.1136/tsaco-2017-000088
  • Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–874. doi:10.1038/nri3552
  • Khademi SH, Sazinas P, Jelsbak L. Within-host adaptation mediated by intergenic evolution in Pseudomonas aeruginosa. Genome Biol Evol. 2019;11:1385–1397. doi:10.1093/gbe/evz083
  • Roth DE, Abrams SA, Aloia J, et al. Global prevalence and disease burden of vitamin D deficiency: a roadmap for action in low-and middle-income countries. Ann N Y Acad Sci. 2018;1430:44. doi:10.1111/nyas.13968
  • Giustina A, Adler R, Binkley N, et al. Consensus statement from 2 nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord. 2020;21:89.
  • Mogire RM, Mutua A, Kimita W, et al. Prevalence of vitamin D deficiency in Africa: a systematic review and meta-analysis. Lancet Glob Health. 2020;8:e134–e142. doi:10.1016/S2214-109X(19)30457-7
  • Pilz S, Zittermann A, Trummer C, et al. Vitamin D testing and treatment: a narrative review of current evidence. Endocr Connect. 2019;8:R27–R43.
  • Amrein K, Scherkl M, Hoffmann M, et al. Vitamin D deficiency 2.0: an update on the current status worldwide. Eur J Clin Nutr. 2020;74:1498–1513. doi:10.1038/s41430-020-0558-y
  • Al-Alyani H, Al-Turki HA, Al-Essa ON, Alani FM, Sadat-Ali M. Vitamin D deficiency in Saudi Arabians: a reality or simply hype: a meta-analysis (2008–2015). J Family Community Med. 2018;25:1.
  • Kempker JA, Tangpricha V, Ziegler TR, Martin GS. Vitamin D in sepsis: from basic science to clinical impact. Crit Care. 2012;16:316. doi:10.1186/cc11252
  • Azim A, Ahmed A, Yadav S, et al. Prevalence of vitamin D deficiency in critically ill patients and its influence on outcome: experience from a tertiary care centre in North India (an observational study). J Intensive Care. 2013;1:1–5. doi:10.1186/2052-0492-1-14
  • Amrein K, Papinutti A, Mathew E, Vila G, Parekh D. Vitamin D and critical illness: what endocrinology can learn from intensive care and vice versa. Endocr Connect. 2018;7:R304–R315. doi:10.1530/EC-18-0184
  • de Haan K, Groeneveld AJ, de Geus HR, Egal M, Struijs A. Vitamin D deficiency as a risk factor for infection, sepsis and mortality in the critically ill: systematic review and meta-analysis. Crit Care. 2014;18:660. doi:10.1186/s13054-014-0660-4
  • Fares A. Factors influencing the seasonal patterns of infectious diseases. Int J Prev Med. 2013;4:128.
  • Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96:1911–1930. doi:10.1210/jc.2011-0385
  • Helde Frankling M, Norlin A-C, Hansen S, Wahren Borgström E, Bergman P, Björkhem-Bergman L. Are vitamin D3 tablets and oil drops equally effective in raising S-25-hydroxyvitamin D concentrations? A post-hoc analysis of an observational study on immunodeficient patients. Nutrients. 2020;12:1230. doi:10.3390/nu12051230
  • Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The role of vitamin D in the immune system as a pro-survival molecule. Clin Ther. 2017;39:894–916. doi:10.1016/j.clinthera.2017.03.021
  • Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mol Sci. 2018;19:2663. doi:10.3390/ijms19092663
  • Shin DM, Yuk JM, Lee HM, et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 2010;12:1648–1665.
  • Lagishetty V, Liu NQ, Hewison M. Vitamin D metabolism and innate immunity. Mol Cell Endocrinol. 2011;347:97–105. doi:10.1016/j.mce.2011.04.015
  • Nair P, Venkatesh B, Center JR. Vitamin D deficiency and supplementation in critical illness—the known knowns and known unknowns. Crit Care. 2018;22:276. doi:10.1186/s13054-018-2185-8
  • Ahari MH, Pishbin E. Vitamin D and sepsis. Rev Clin Med. 2014;1:225–228.
  • Christakos S, Dhawan P, Benn B, et al. Vitamin D: molecular mechanism of action. Ann N Y Acad Sci. 2007;1116:340–348. doi:10.1196/annals.1402.070
  • Jeon S-M, Shin E-A. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50:20. doi:10.1038/s12276-018-0038-9
  • Chung C, Silwal P, Kim I, Modlin RL, Jo E-K. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020;20. doi:10.4110/in.2020.20.e12
  • Van Harten RM, Van Woudenbergh E, Van Dijk A, Haagsman HP. Cathelicidins: immunomodulatory antimicrobials. Vaccines. 2018;6:63. doi:10.3390/vaccines6030063
  • Prietl B, Treiber G, Pieber TR, Amrein K. Vitamin D and immune function. Nutrients. 2013;5:2502–2521. doi:10.3390/nu5072502
  • Hewison M. Antibacterial effects of vitamin D. Nat Rev Endocrinol. 2011;7:337. doi:10.1038/nrendo.2010.226
  • Gombart AF. The vitamin D–antimicrobial peptide pathway and its role in protection against infection. Future Microbiol. 2009;4:1151–1165. doi:10.2217/fmb.09.87
  • Youssef DA, Miller CW, El-Abbassi AM, et al. Antimicrobial implications of vitamin D. Dermato-Endocrinology. 2011;3:220–229. doi:10.4161/derm.3.4.15027
  • Wei R, Christakos S. Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients. 2015;7:8251–8260. doi:10.3390/nu7105392
  • Sheikh V, Kasapoglu P, Zamani A, Basiri Z, Tahamoli-Roudsari A, Alahgholi-Hajibehzad M. Vitamin D3 inhibits the proliferation of T helper cells, downregulate CD4+ T cell cytokines and upregulate inhibitory markers. Hum Immunol. 2018;79:439–445. doi:10.1016/j.humimm.2018.03.001
  • Bozic M, Álvarez Á, de Pablo C, et al. Impaired vitamin D signaling in endothelial cell leads to an enhanced leukocyte-endothelium interplay: implications for atherosclerosis development. PLoS One. 2015;10:e0136863. doi:10.1371/journal.pone.0136863
  • Hoe E, Nathanielsz J, Toh ZQ, et al. Anti-inflammatory effects of vitamin D on human immune cells in the context of bacterial infection. Nutrients. 2016;8:806. doi:10.3390/nu8120806
  • Ojaimi S, Skinner NA, Strauss BJ, Sundararajan V, Woolley I, Visvanathan K. Vitamin D deficiency impacts on expression of toll-like receptor-2 and cytokine profile: a pilot study. J Transl Med. 2013;11:1–7. doi:10.1186/1479-5876-11-176
  • Calton EK, Keane KN, Newsholme P, Soares MJ. The impact of vitamin D levels on inflammatory status: a systematic review of immune cell studies. PLoS One. 2015;10:e0141770. doi:10.1371/journal.pone.0141770
  • Umar M, Sastry KS, Chouchane AI. Role of vitamin D beyond the skeletal function: a review of the molecular and clinical studies. Int J Mol Sci. 2018;19:1618. doi:10.3390/ijms19061618
  • Haak BW, Wiersinga WJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol. 2017;2:135–143. doi:10.1016/S2468-1253(16)30119-4
  • Haak BW, Prescott HC, Wiersinga WJ. Therapeutic potential of the gut microbiota in the prevention and treatment of sepsis. Front Immunol. 2018;9:2042. doi:10.3389/fimmu.2018.02042
  • Miller WD, Keskey R, Alverdy JC. Sepsis and the microbiome: a vicious cycle. J Infect Dis. 2021;223:S264–S269.
  • Akimbekov NS, Digel I, Sherelkhan DK, Lutfor AB, Razzaque MS. Vitamin D and the host-gut microbiome: a brief overview. Acta Histochem Cytochem. 2020;53:33–42. doi:10.1267/ahc.20011
  • Bassetti M, Bandera A, Gori A. Therapeutic potential of the gut microbiota in the management of sepsis. Crit Care. 2020;24:1–7. doi:10.1186/s13054-020-2780-3
  • Russwurm S, Vickers J, Meier-Hellmann A, et al. Platelet and leukocyte activation correlate with the severity of septic organ dysfunction. Shock. 2002;17:263–268. doi:10.1097/00024382-200204000-00004
  • Wang X, Qin W, Sun B. New strategy for sepsis: targeting a key role of platelet-neutrophil interaction. Burns Trauma. 2014;2:2321–3868.135487
  • Alharbi A, Thomas R, Ali M, Thompson J, Stover C. Factors in homo and heterotypic aggregate formation in sepsis. Sepsis. 2016:1–11. https://leicester.figshare.com/articles/chapter/Factors_in_Homo_and_Heterotypic_Aggregate_Formation_in_Sepsis/10235075.
  • Mohammad S, Mishra A, Ashraf MZ. Emerging role of vitamin D and its associated molecules in pathways related to pathogenesis of thrombosis. Biomolecules. 2019;9:649. doi:10.3390/biom9110649
  • Tay HM, Yeap WH, Dalan R, Wong SC, Hou HW. Increased monocyte‐platelet aggregates and monocyte‐endothelial adhesion in healthy individuals with vitamin D deficiency. FASEB J. 2020;34:11133–11142. doi:10.1096/fj.202000822R
  • Yildirim T, Solmaz D, Akgol G, Ersoy Y. Relationship between mean platelet volume and vitamin D deficiency in fibromyalgia. Biomed Res. 2016;27(4).
  • Sultan M, Twito O, Tohami T, Ramati E, Neumark E, Rashid G. Vitamin D diminishes the high platelet aggregation of type 2 diabetes mellitus patients. Platelets. 2019;30:120–125. doi:10.1080/09537104.2017.1386298
  • Sriskandan S, Altmann D. The immunology of sepsis. J Pathol. 2008;214:211–223. doi:10.1002/path.2274
  • Matsuda A, Jacob A, Wu R, et al. Novel therapeutic targets for sepsis: regulation of exaggerated inflammatory responses. J Nippon Med Sch. 2012;79:4–18. doi:10.1272/jnms.79.4
  • Cognasse F, Hamzeh H, Chavarin P, Acquart S, Genin C, Garraud O. Evidence of Toll‐like receptor molecules on human platelets. Immunol Cell Biol. 2005;83:196–198. doi:10.1111/j.1440-1711.2005.01314.x
  • Sadeghi K, Wessner B, Laggner U, et al. Vitamin D3 down‐regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen‐associated molecular patterns. Eur J Immunol. 2006;36:361–370. doi:10.1002/eji.200425995
  • Adegoke SA, Smith OS, Adekile AD, Figueiredo MS. Relationship between serum 25-hydroxyvitamin D and inflammatory cytokines in paediatric sickle cell disease. Cytokine. 2017;96:87–93. doi:10.1016/j.cyto.2017.03.010
  • Korzonek-Szlacheta I, Hudzik B, Nowak J, et al. Mean platelet volume is associated with serum 25-hydroxyvitamin D concentrations in patients with stable coronary artery disease. Heart Vessels. 2018;33:1275–1281. doi:10.1007/s00380-018-1182-9
  • Park YC, Kim J, Seo MS, Hong SW, Cho ES, Kim J-K. Inverse relationship between vitamin D levels and platelet indices in Korean adults. Hematology. 2017;22:623–629. doi:10.1080/10245332.2017.1318334
  • Stokes KY, Granger DN. Platelets: a critical link between inflammation and microvascular dysfunction. J Physiol. 2012;590:1023–1034. doi:10.1113/jphysiol.2011.225417
  • Rahman M, Roller J, Zhang S, et al. Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm Res. 2012;61:571–579. doi:10.1007/s00011-012-0446-6
  • Sharifi A, Vahedi H, Honarvar MR, et al. Vitamin D decreases CD40L gene expression in ulcerative colitis patients: a randomized, double-blinded, placebo-controlled trial. Turk J Gastroenterol. 2020;31:99. doi:10.5152/tjg.2020.181028
  • Naeini AE, Moeinzadeh F, Vahdat S, Ahmadi A, Hedayati ZP, Shahzeidi S. The effect of vitamin D administration on intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 levels in hemodialysis patients: a placebo-controlled, double-blinded clinical trial. J Res Pharm Pract. 2017;6:16. doi:10.4103/2279-042X.200994
  • David S, Kümpers P, van Slyke P, Parikh SM. Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther. 2013;345:2–6. doi:10.1124/jpet.112.201061
  • Hegen A, Koidl S, Weindel K, Marmé D, Augustin HG, Fiedler U. Expression of angiopoietin-2 in endothelial cells is controlled by positive and negative regulatory promoter elements. Arterioscler Thromb Vasc Biol. 2004;24:1803–1809.
  • El-Banawy HS, Gaber EW, Maharem DA, Matrawy KA. Angiopoietin-2, endothelial dysfunction and renal involvement in patients with systemic lupus erythematosus. J Nephrol. 2012;25:541–550. doi:10.5301/jn.5000030
  • Graham SM, Rajwans N, Tapia KA, et al. A prospective study of endothelial activation biomarkers, including plasma angiopoietin-1 and angiopoietin-2, in Kenyan women initiating antiretroviral therapy. BMC Infect Dis. 2013;13:1–11. doi:10.1186/1471-2334-13-263
  • Fiedler U, Reiss Y, Scharpfenecker M, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat Med. 2006;12:235–239. doi:10.1038/nm1351
  • Mussap M, Cibecchini F, Noto A, Fanos V. In search of biomarkers for diagnosing and managing neonatal sepsis: the role of angiopoietins. J Matern Fetal Neonatal Med. 2013;26:24–26. doi:10.3109/14767058.2013.830411
  • Johal P, Kamboj K, Kumar AY, Kumar V, Jha V. SUN-085 effect of cholecalciferol supplementation on serum angiopoietin-2 levels in CKD. Kidney Int Rep. 2020;5:S237. doi:10.1016/j.ekir.2020.02.611
  • Zhao Y, Guo Y, Jiang Y, Zhu X, Zhang X. Vitamin D suppresses macrophage infiltration by down-regulation of TREM-1 in diabetic nephropathy rats. Mol Cell Endocrinol. 2018;473:44–52. doi:10.1016/j.mce.2018.01.001
  • Ivanov II, Apta BH, Bonna AM, Harper MT. Platelet P-selectin triggers rapid surface exposure of tissue factor in monocytes. Sci Rep. 2019;9:1–10. doi:10.1038/s41598-019-49635-7
  • Zelaya H, Rothmeier A, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost. 2018;16:1941–1952.
  • Bouchard BA, Krudysz-Amblo J, Butenas S. Platelet tissue factor is not expressed transiently after platelet activation. Blood. 2012;119:4338–4339.
  • Takeshita J, Mohler ER III, Krishnamoorthy P, et al. Endothelial cell‐, platelet‐, and monocyte/macrophage‐derived microparticles are elevated in psoriasis beyond cardiometabolic risk factors. J Am Heart Assoc. 2014;3:e000507. doi:10.1161/JAHA.113.000507
  • Creager M, Loscalzo J, Beckman JA. Vascular Medicine E-Book: A Companion to Braunwald’s Heart Disease. Elsevier Health Sciences; 2012.
  • Sugama Y, Tiruppathi C, Andersen T, Fenton J, Malik A. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion. J Cell Biol. 1992;119:935–944. doi:10.1083/jcb.119.4.935
  • Meiring M, Allers W, Le Roux E. Tissue factor: a potent stimulator of Von Willebrand factor synthesis by human umbilical vein endothelial cells. Int J Med Sci. 2016;13:759. doi:10.7150/ijms.15688
  • Ueno A, Murakami K, Yamanouchi K, Watanabe M, Kondo T. Thrombin stimulates production of interleukin‐8 in human umbilical vein endothelial cells. Immunology. 1996;88:76–81. doi:10.1046/j.1365-2567.1996.d01-635.x
  • Heller R, Bussolino F, Ghigo D, et al. Nitrovasodilators inhibit thrombin-induced platelet-activating factor synthesis in human endothelial cells. Biochem Pharmacol. 1992;44:223–229. doi:10.1016/0006-2952(92)90004-3
  • Huang Y-Q, Li -J-J, Hu L, Lee M, Karpatkin S. Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells. Blood. 2002;99:1646–1650.
  • Rossaint J, Zarbock A. Platelets in leucocyte recruitment and function. Cardiovasc Res. 2015;107:386–395. doi:10.1093/cvr/cvv048
  • Cimmino G, Morello A, Conte S, et al. Vitamin D inhibits tissue factor and CAMs expression in oxidized low-density lipoproteins-treated human endothelial cells by modulating NF-κB pathway. Eur J Pharmacol. 2020;885:173422. doi:10.1016/j.ejphar.2020.173422
  • Lundwall K, Mörtberg J, Mobarrez F, Jacobson SH, Jörneskog G, Spaak J. Changes in microparticle profiles by vitamin D receptor activation in chronic kidney disease–a randomized trial. BMC Nephrol. 2019;20:1–10. doi:10.1186/s12882-019-1445-4
  • Jia X, Xu J, Gu Y, Gu X, Li W, Wang Y. Vitamin D suppresses oxidative stress-induced microparticle release by human umbilical vein endothelial cells. Biol Reprod. 2017;96:199–210. doi:10.1093/biolre/bio142604
  • Blondon M, Biver E, Braillard O, Righini M, Fontana P, Casini A. Thrombin generation and fibrin clot structure after vitamin D supplementation. Endocr Connect. 2019;8:1447–1454. doi:10.1530/EC-19-0429
  • Guessous I. Role of vitamin D deficiency in extraskeletal complications: predictor of health outcome or marker of health status? Biomed Res Int. 2015;2015:1–13. doi:10.1155/2015/563403
  • Lips P, Cashman KD, Lamberg-Allardt C, et al. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: a position statement of the European Calcified Tissue Society. Eur J Endocrinol. 2019;180:P23–P54.
  • Bouillon R, Rosen CJ, Mulder JE. Vitamin D and extraskeletal health. UpToDate. 2015;7.
  • Takeuti FA, Souza-Fonseca-Guimaraes F, Guimaraes PS. Applications of vitamin D in sepsis prevention. Discov Med. 2018;25:291–297.
  • Reijven P, Soeters P. Vitamin D: a magic bullet or a myth? Clin Nutr. 2020;39(9):2663–2674. doi:10.1016/j.clnu.2019.12.028
  • Bikle DD, Schwartz J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol (Lausanne). 2019;10. doi:10.3389/fendo.2019.00317
  • Bikle D. Vitamin D: production, metabolism, and mechanisms of action. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText. com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278935/
  • Xie Z, Wang X, Bikle DD. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front Endocrinol (Lausanne). 2020;11:40. doi:10.3389/fendo.2020.00040
  • Cho M-C, Kim JH, Jung MH, et al. Analysis of vitamin D-binding protein (VDBP) gene polymorphisms in Korean women with and without endometriosis. Clin Exp Reprod Med. 2019;46(3):132. doi:10.5653/cerm.2019.00122
  • Mehramiz M, Khayyatzadeh SS, Esmaily H, et al. Associations of vitamin D binding protein variants with the vitamin D-induced increase in serum 25-hydroxyvitamin D. Clin Nutr. 2019;29:59–64. doi:10.1016/j.clnesp.2018.12.005
  • Rossol M, Pierer M, Raulien N, et al. Extracellular Ca 2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun. 2012;3:1–9. doi:10.1038/ncomms2339
  • Sakem B, Nock C, Stanga Z, et al. Serum concentrations of 25-hydroxyvitamin D and immunoglobulins in an older Swiss cohort: results of the Senior Labor Study. BMC Med. 2013;11:176. doi:10.1186/1741-7015-11-176
  • Stover CM, McDonald J, Byrne S, Lambert DG, Thompson JP. Properdin levels in human sepsis. Front Immunol. 2015;6:24. doi:10.3389/fimmu.2015.00024
  • Ospina-Caicedo AI, Cardona-Rincón AD, Bello-Gualtero JM, et al. Lower levels of vitamin D associated with disease activity in Colombian patients with systemic lupus erythematosus. Curr Rheumatol Rev. 2019;15:146–153. doi:10.2174/1573397114666181015161547
  • Karasu E, Nilsson B, Köhl J, Lambris JD, Huber-Lang M. Targeting complement pathways in polytrauma-and sepsis-induced multiple-organ dysfunction. Front Immunol. 2019;10:543. doi:10.3389/fimmu.2019.00543
  • Nedeva C, Menassa J, Puthalakath H. Sepsis: inflammation is a necessary evil. Front Cell Dev Biol. 2019;7:108. doi:10.3389/fcell.2019.00108
  • Sharma NK, Ferreira BL, Tashima AK, et al. Lipid metabolism impairment in patients with sepsis secondary to hospital acquired pneumonia, a proteomic analysis. Clin Proteomics. 2019;16:29. doi:10.1186/s12014-019-9252-2
  • Bashir NA, Bashir AAM, Bashir HA. Effect of vitamin D deficiency on lipid profile. Am J Lab Med. 2019;4:11–18. doi:10.11648/j.ajlm.20190401.12
  • Dibaba DT. Effect of vitamin D supplementation on serum lipid profiles: a systematic review and meta-analysis. Nutr Rev. 2019;77:890–902. doi:10.1093/nutrit/nuz037
  • Lee SH, Park MS, Park BH, et al. Prognostic implications of serum lipid metabolism over time during sepsis. Biomed Res Int. 2015;2015:1–8. doi:10.1155/2015/789298
  • Schwetz V, Scharnagl H, Trummer C, et al. Vitamin D supplementation and lipoprotein metabolism: a randomized controlled trial. J Clin Lipidol. 2018;12:588–596. e584. doi:10.1016/j.jacl.2018.03.079