65
Views
1
CrossRef citations to date
0
Altmetric
Original Research

LPS-Induced Inflammation Affects Midazolam Clearance in Juvenile Mice in an Age-Dependent Manner

, , , , , , , , , , , , , , , , , & ORCID Icon show all
Pages 3697-3706 | Published online: 03 Aug 2021

References

  • de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505. doi:10.2165/00003088-199937060-00004
  • Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–141. doi:10.1016/j.pharmthera.2012.12.007
  • Franken LG, Masman AD, de Winter B, et al. Hypoalbuminaemia and decreased midazolam clearance in terminally ill adult patients, an inflammatory effect? Br J Clin Pharmacol. 2017;83(8):1701–1712. doi:10.1111/bcp.13259
  • Ince I, de Wildt SN, Peeters MY, et al. Critical illness is a major determinant of midazolam clearance in children aged 1 month to 17 years. Ther Drug Monit. 2012;34(4):381–389. doi:10.1097/FTD.0b013e31825a4c3a
  • Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–175. doi:10.1002/jbt.20179
  • Kearns GL. Pharmacogenetics and development: are infants and children at increased risk for adverse outcomes? Curr Opin Pediatr. 1995;7(2):220–233. doi:10.1097/00008480-199504000-00018
  • Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics. 1994;4(1):11–20. doi:10.1097/00008571-199402000-00002
  • Brussee JM, Vet NJ, Krekels E, et al. Predicting CYP3A-mediated midazolam metabolism in critically ill neonates, infants, children and adults with inflammation and organ failure. Br J Clin Pharmacol. 2018;84(2):358–368. doi:10.1111/bcp.13459
  • Vet NJ, Brussee JM, de Hoog M, et al. Inflammation and organ failure severely affect midazolam clearance in critically ill children. Am J Respir Crit Care Med. 2016;194(1):58–66. doi:10.1164/rccm.201510-2114OC
  • Altamimi MI. Variation in Clearance and Invasiveness of Pharmacokinetic Studies in Children[Dissertation]. University of Nottingham; 2016.
  • Ikeda M, Hamada K, Sumitomo N, et al. Serum amyloid A, cytokines, and corticosterone responses in germfree and conventional mice after lipopolysaccharide injection. Biosci Biotechnol Biochem. 1999;63(6):1006–1010. doi:10.1271/bbb.63.1006
  • De Cock RF, Piana C, Krekels EH, et al. The role of population PK-PD modelling in paediatric clinical research. Eur J Clin Pharmacol. 2011;67(Suppl 1):5–16. doi:10.1007/s00228-009-0782-9
  • Zhao W, Le Guellec C, Benjamin DK, et al. First dose in neonates: are juvenile mice, adults and in vitro-in silico data predictive of neonatal pharmacokinetics of fluconazole. Clin Pharmacokinet. 2014;53(11):1005–1018. doi:10.1007/s40262-014-0169-7
  • Lavy E, Ziv G, Shem-Tov M, Glickman A, Dey A. Pharmacokinetics of clindamycin HCl administered intravenously, intramuscularly and subcutaneously to dogs. J Vet Pharmacol Ther. 1999;22(4):261–265. doi:10.1046/j.1365-2885.1999.00221.x
  • Lindbom L, Ribbing J, Jonsson EN. Perl-speaks-NONMEM (PsN) – a Perl module for NONMEM related programming. Comput Methods Programs Biomed. 2004;75(2):85–94. doi:10.1016/j.cmpb.2003.11.003
  • Brendel K, Comets E, Laffont C, et al. Metrics for external model evaluation with an application to the population pharmacokinetics of gliclazide. Pharm Res. 2006;23(9):2036–2049. doi:10.1007/s11095-006-9067-5
  • Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–166. doi:10.1016/j.cmpb.2007.12.002
  • Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36. doi:10.2133/dmpk.24.25
  • Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21(3):302–308. doi:10.1111/j.1460-9592.2010.03364.x
  • Cui JY, Renaud HJ, Klaassen CD. Ontogeny of novel cytochrome P450 gene isoforms during postnatal liver maturation in mice. Drug Metabol Disposit. 2012;40(6):1226–1237. doi:10.1124/dmd.111.042697
  • Nakagaki BN, Mafra K, de Carvalho É, et al. Immune and metabolic shifts during neonatal development reprogram liver identity and function. J Hepatol. 2018;69(6):1294–1307. doi:10.1016/j.jhep.2018.08.018
  • Allegaert K, Mian P, van den Anker JN. Developmental pharmacokinetics in neonates: maturational changes and beyond. Curr Pharm Des. 2017;23(38):5769–5778. doi:10.2174/1381612823666170926121124
  • Batchelor HK, Marriott JF. Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol. 2015;79(3):395–404. doi:10.1111/bcp.12267
  • van den Anker J, Reed MD, Allegaert K, et al. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018;58(Suppl 10):S10–S25. doi:10.1002/jcph.1284
  • Fomon SJ, Haschke F, Ziegler EE, et al. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5):1169–1175. doi:10.1093/ajcn/35.5.1169
  • Friis-Hansen B. Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth. Pediatrics. 1971;47(1):264+.
  • Hawkes CP, Hourihane JO, Kenny LC, et al. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128(3):e645–e6451. doi:10.1542/peds.2010-3856
  • Ginsberg G, Hattis D, Sonawane B, et al. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci. 2002;66(2):185–200. doi:10.1093/toxsci/66.2.185
  • Yang P, Zhou W, Li C, et al. Kupffer-cell-expressed transmembrane TNF-α is a major contributor to lipopolysaccharide and D-galactosamine-induced liver injury. Cell Tissue Res. 2016;363(2):371–383. doi:10.1007/s00441-015-2252-2
  • Jeljeli M, Guérin-El Khourouj V, Pédron B, et al. Ontogeny of cytokine responses to PHA from birth to adulthood. Pediatr Res. 2019;86(1):63–70. doi:10.1038/s41390-019-0383-y