100
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Platelet Mediated Inflammation in Coronary Artery Disease with Type 2 Diabetes Patients

, , , , & ORCID Icon
Pages 5131-5147 | Published online: 07 Oct 2021

References

  • Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res. 2015;2015:490842. doi:10.1155/2015/490842
  • Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract. 2019;157:107843. doi:10.1016/j.diabres.2019.107843
  • Aronson D, Edelman ER. Coronary artery disease and diabetes mellitus. Cardiol Clin. 2014;32(3):439–455. doi:10.1016/j.ccl.2014.04.001
  • Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;17(1):1–14. doi:10.1186/s12933-018-0762-4
  • Nam H, Cho Y, Lim J, et al. Functional status of immune cells in patients with long‐lasting type 2 diabetes mellitus. Clin Exp Immunol. 2018;194(1):125–136. doi:10.1111/cei.13187
  • Nagareddy PR, Murphy AJ, Stirzaker RA, et al. Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab. 2013;17:695–708. doi:10.1016/j.cmet.2013.04.001
  • Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes. Nat Rev Immunol. 2019;19(12):734–746. doi:10.1038/s41577-019-0213-9
  • Adela R, Reddy PNC, Ghosh TS, et al. Serum protein signature of coronary artery disease in type 2 diabetes mellitus. J Transl Med. 2019;17(1):1–17. doi:10.1186/s12967-018-1755-5
  • Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123(18):2759–2767. doi:10.1182/blood-2013-11-462432
  • Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):1–17. doi:10.1186/s12933-018-0763-3
  • Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet function in patients with diabetes mellitus: from a theoretical to a practical perspective. Int J Endocrinol. 2011;2011:1–14. doi:10.1155/2011/742719
  • Israels SJ, McNicol A, Dean HJ, Cognasse F, Sellers EA. Markers of platelet activation are increased in adolescents with type 2 diabetes. Diabetes Care. 2014;37(8):2400–2403. doi:10.2337/dc13-2718
  • Pretorius L, Thomson GJ, Adams RC, Nell TA, Laubscher WA, Pretorius E. Platelet activity and hypercoagulation in type 2 diabetes. Cardiovasc Diabetol. 2018;17(1):1–11. doi:10.1186/s12933-018-0783-z
  • Thomas MR, Storey RF. The role of platelets in inflammation. Thromb Haemost. 2015;114(09):449–458. doi:10.1160/TH14-12-1067
  • Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol. 2018;9:2712. doi:10.3389/fimmu.2018.02712
  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi:10.1093/nar/gkn923
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Martín-Timón I, Sevillano-Collantes C, Segura-Galindo A, Del Cañizo-Gómez FJ. Type 2 diabetes and cardiovascular disease: have all risk factors the same strength? World J Diabetes. 2014;5(4):444. doi:10.4239/wjd.v5.i4.444
  • Pedicino D, Liuzzo G, Trotta F, et al. Adaptive immunity, inflammation, and cardiovascular complications in type 1 and type 2 diabetes mellitus. J Diabetes Res. 2013;2013:1–11. doi:10.1155/2013/184258
  • Madhumitha H, Mohan V, Deepa M, Babu S, Aravindhan V. Increased Th1 and suppressed Th2 serum cytokine levels in subjects with diabetic coronary artery disease. Cardiovasc Diabetol. 2014;13(1):1–8. doi:10.1186/1475-2840-13-1
  • Pretorius E. Platelets as potent signaling entities in type 2 diabetes mellitus. Trends Endocrinol Metab. 2019;30(8):532–545. doi:10.1016/j.tem.2019.05.003
  • Shantsila E, Tapp LD, Wrigley BJ, et al. Monocyte subsets in coronary artery disease and their associations with markers of inflammation and fibrinolysis. Atherosclerosis. 2014;234(1):4–10. doi:10.1016/j.atherosclerosis.2014.02.009
  • Kapellos TS, Bonaguro L, Gemünd I, et al. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Front Immunol. 2019;10:2035. doi:10.3389/fimmu.2019.02035
  • Seifarth C, Hinkmann C, Hahn E-G, Lohmann T, Harsch I. Reduced frequency of peripheral dendritic cells in type 2 diabetes. Exp Clin Endocrinol Diabetes. 2008;116(03):162–166. doi:10.1055/s-2007-990278
  • Van Vre EA, Hoymans VY, Bult H, et al. Decreased number of circulating plasmacytoid dendritic cells in patients with atherosclerotic coronary artery disease. Coron Artery Dis. 2006;17(3):243–248. doi:10.1097/00019501-200605000-00007
  • Zernecke A. Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler Thromb Vasc Biol. 2015;35(4):763–770. doi:10.1161/ATVBAHA.114.303566
  • Gkaliagkousi E, Gavriilaki E, Yiannaki E, et al. Platelet activation in essential hypertension during exercise: pre-and post-treatment changes with an angiotensin II receptor blocker. Am J Hypertens. 2014;27(4):571–578. doi:10.1093/ajh/hpt153
  • Gkaliagkousi E, Corrigall V, Becker S, et al. Decreased platelet nitric oxide contributes to increased circulating monocyte-platelet aggregates in hypertension. Eur Heart J. 2009;30(24):3048–3054. doi:10.1093/eurheartj/ehp330
  • Goubareva I, Gkaliagkousi E, Shah A, Queen L, Ritter J, Ferro A. Age decreases nitric oxide synthesis and responsiveness in human platelets and increases formation of monocyte–platelet aggregates. Cardiovasc Res. 2007;75(4):793–802. doi:10.1016/j.cardiores.2007.05.021
  • Gupta M, Brister S, Verma S. Is South Asian ethnicity an independent cardiovascular risk factor? Can J Cardiol. 2006;22(3):193–197. doi:10.1016/s0828-282x(06)70895-9
  • Martins PA, van Gils JM, Mol A, Hordijk PL, Zwaginga JJ. Platelet binding to monocytes increases the adhesive properties of monocytes by up‐regulating the expression and functionality of β1 and β2 integrins. J Leukoc Biol. 2006;79(3):499–507. doi:10.1189/jlb.0605318
  • Page C, Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int Immunopharmacol. 2013;17(4):1176–1184. doi:10.1016/j.intimp.2013.06.004
  • Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS One. 2011;6(10):e25595. doi:10.1371/journal.pone.0025595
  • Gkaliagkousi E, Nikolaidou B, Gavriilaki E, et al. Increased erythrocyte-and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diab Vasc Dis Res. 2019;16(5):458–465. doi:10.1177/1479164119844691
  • Gkaliagkousi E, Gavriilaki E, Yiannaki E, et al. Platelet microvesicles are associated with the severity of coronary artery disease: comparison between peripheral and coronary circulation. J Thromb Thrombolysis. 2021;51(4):1138–1143. doi:10.1007/s11239-020-02302-5
  • Lazaridis A, Gavriilaki E, Nikolaidou B, et al. A study of endothelial and platelet microvesicles across different hypertension phenotypes. J Hum Hypertens. 2021;1–9. doi:10.1038/s41371-021-00531-6.
  • Yun S-H, Sim E-H, Goh R-Y, Park J-I, Han J-Y. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:1–5. doi:10.1155/2016/9060143
  • Herder C, Haastert B, Müller-Scholze S, et al. Association of systemic chemokine concentrations with impaired glucose tolerance and type 2 diabetes: results from the Cooperative Health Research in the Region of Augsburg Survey S4 (KORA S4). Diabetes. 2005;54(suppl2):S11–S17. doi:10.2337/diabetes.54.suppl_2.s11
  • Araújo LS, da Silva MV, da Silva CA, et al. Analysis of serum inflammatory mediators in type 2 diabetic patients and their influence on renal function. PLoS One. 2020;15(3):e0229765. doi:10.1371/journal.pone.0229765
  • Lam FW, Vijayan KV, Rumbaut RE. Platelets and their interactions with other immune cells. Compr Physiol. 2015;5(3):1265. doi:10.1002/cphy.c140074
  • Min X, Lu M, Tu S, et al. Serum cytokine profile in relation to the severity of coronary artery disease. Biomed Res Int. 2017;2017:1–9. doi:10.1155/2017/4013685
  • Kumari R, Kumar S, Ahmad MK, et al. TNF-α/IL-10 ratio: an independent predictor for coronary artery disease in North Indian population. Diabetes Metab Syndr. 2018;12(3):221–225. doi:10.1016/j.dsx.2017.09.006
  • Shirai T, Nazarewicz RR, Wallis BB, et al. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213(3):337–354. doi:10.1084/jem.20150900
  • Ding R, Gao W, Ostrodci DH, et al. Effect of interleukin-2 level and genetic variants on coronary artery disease. Inflammation. 2013;36(6):1225–1231. doi:10.1007/s10753-013-9659-2
  • Shintani Y, Ito T, Fields L, et al. IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: proof-of-concept data in mice. Sci Rep. 2017;7(1):1–14. doi:10.1038/s41598-017-07328-z
  • Yuan S, Lin A, He Q-Q, Burgess S, Larsson SC. Circulating interleukins in relation to coronary artery disease, atrial fibrillation and ischemic stroke and its subtypes: a two-sample Mendelian randomization study. Int J Cardiol. 2020;313:99–104. doi:10.1016/j.ijcard.2020.03.053
  • Zhang S, Gao Y, Huang J. Interleukin-8 gene− 251 A/T (rs4073) polymorphism and coronary artery disease risk: a meta-analysis. Med Sci Monit. 2019;25:1645. doi:10.12659/MSM.913591
  • Podolec J, Kopeć G, Niewiara MK, et al. Chemokine RANTES is increased at early stages of atherosclerosis severity. J Physiol Pharmacol. 2016;67(2):321–328.
  • Pordel S, Sajedi Khanian M, Karimi MH, Nikoo H, Doroudchi M. Plasma CXCL 1 levels and TRAF 3 IP 2 variants in patients with myocardial infarction. J Clin Lab Anal. 2018;32(6):e22402. doi:10.1002/jcla.22402
  • Trøseid M, Seljeflot I, Arnesen H. The role of interleukin-18 in the metabolic syndrome. Cardiovasc Diabetol. 2010;9(1):1–8. doi:10.1186/1475-2840-9-11
  • Suchanek H, Myśliwska J, Siebert J, et al. High serum interleukin-18 concentrations in patients with coronary artery disease and type 2 diabetes mellitus. Eur Cytokine Netw. 2005;16(3):177–185.
  • Lin J, Kakkar V, Lu X. Impact of MCP-1 in atherosclerosis. Curr Pharm Des. 2014;20(28):4580–4588. doi:10.2174/1381612820666140522115801
  • Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2003;100(12):7265–7270. doi:10.1073/pnas.1133870100
  • Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1β synthesis. J Cell Biol. 2001;154(3):485–490. doi:10.1083/jcb.200105058
  • Brown GT, McIntyre TM. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1β–rich microparticles. J Immunol. 2011;186(9):5489–5496. doi:10.4049/jimmunol.1001623
  • Hottz ED, Monteiro APT, Bozza FA, Bozza PT. Inflammasome in platelets: allying coagulation and inflammation in infectious and sterile diseases? Mediators Inflamm. 2015;2015:1–7. doi:10.1155/2015/435783
  • Rolfes V, Ribeiro LS, Hawwari I, et al. Platelets fuel the inflammasome activation of innate immune cells. Cell Rep. 2020;31(6):107615. doi:10.1016/j.celrep.2020.107615
  • Scherr C, Albuquerque DC, Pozzan R, et al. Role of interleukin-18 and the thrombus precursor protein in coronary artery disease. Arq Bras Cardiol. 2020;114(4):692–698. doi:10.36660/abc.20190176
  • Kral JB, Schrottmaier WC, Salzmann M, Assinger A. Platelet interaction with innate immune cells. Transfus Med Hemother. 2016;43(2):78–88. doi:10.1159/000444807
  • Kojok K, El-Kadiry AE-H, Merhi Y. Role of NF-κB in platelet function. Int J Mol Sci. 2019;20(17):4185. doi:10.3390/ijms20174185
  • Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol. 2008;28(11):1920–1927. doi:10.1161/ATVBAHA.108.169417
  • Liu D, Cao Y, Zhang X, et al. Chemokine CC-motif ligand 2 participates in platelet function and arterial thrombosis by regulating PKCα-P38MAPK-HSP27 pathway. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9):2901–2912. doi:10.1016/j.bbadis.2018.05.025