77
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Atherosclerosis Pathways are Activated in Pericoronary Adipose Tissue of Patients with Coronary Artery Disease

, , , , , ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 5419-5431 | Published online: 20 Oct 2021

References

  • Dwivedi AK, Dubey P, Cistola DP, et al. Association between obesity and cardiovascular outcomes: updated evidence from meta-analysis studies. Curr Cardiol Rep. 2020;22(4):25. doi:10.1007/s11886-020-1273-y
  • Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther. 2010;87:407–416. doi:10.1038/clpt.2009.311
  • Lemieux I, Després JP. Metabolic syndrome: past, present and future. Nutrients. 2020;12(11):3501. doi:10.3390/nu12113501
  • Rabkin SW. Epicardial fat: properties, function and relationship to obesity. Obes Rev. 2007;8:253–261. doi:10.1111/j.1467-789X.2006.00293.x
  • Iacobellis G, Willens HJ, Barbaro G, et al. Threshold values of high-risk echocardiographic epicardial fat thickness. Obesity. 2008;16:887–892. doi:10.1038/oby.2008.6
  • Mahabadi A, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population. J Am Coll Cardiol. 2013;61:1388–1395. doi:10.1016/j.jacc.2012.11.062
  • Wolf D, Ley K. Immunity and Inflammation in Atherosclerosis. Circ Res. 2019;124(2):315–327. doi:10.1161/CIRCRESAHA.118.313591
  • Zhang L, Zalewski A, Liu Y, et al. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation. 2003;108:472–478. doi:10.1161/01.CIR.0000080378.96063.23
  • Virmani R, Burke AP, Farb A, et al. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.
  • Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–2466. doi:10.1161/01.CIR.0000099542.57313.C5
  • Guglielmi V, Sbraccia P. Epicardial adipose tissue: at the heart of the obesity complications. Acta Diabetol. 2017;54(9):805–812. doi:10.1007/s00592-017-1020-z
  • Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–917. doi:10.1016/j.ahj.2007.03.019
  • Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11(6):363–371. doi:10.1038/nrendo.2015.58
  • Kaartinen M, Penttila A, Kovanen PT. Mast cells accompany microvessels in human coronary atheromas: implications for intimal neovascularization and hemorrhage. Atherosclerosis. 1996;123:123–131. doi:10.1016/0021-9150(95)05794-3
  • Tavora F, Kutys R, Li L, et al. Adventitial lymphocytic inflammation in human coronary arteries with intimal atherosclerosis. Cardiovasc Pathol. 2010;19(3):e61–8. doi:10.1016/j.carpath.2009.02.001
  • Yamashita K, Yamamoto MH, Igawa W, et al. Association of epicardial adipose tissue volume and total coronary plaque burden in patients with coronary artery disease. Int Heart J. 2018;59(6):1219–1226. doi:10.1536/ihj.17-709
  • Mazurek T, Kochman J, Kobylecka M, et al. Inflammatory activity of pericoronary adipose tissue may affect plaque composition in patients with acute coronary syndrome without persistent ST-segment elevation: preliminary results. Kardiol Pol. 2013;72:410–416. doi:10.5603/KP.a2013.0320
  • Mazurek T, Kobylecka M, Zielenkiewicz M, et al. PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: independent predictor of atherosclerotic lesions’ formation? J Nucl Cardiol. 2017;24(3):1075–1084. doi:10.1007/s12350-015-0370-6
  • Guauque-Olarte S, Gaudreault N, Piche ME, et al. The transcriptome of human epicardial, mediastinal and subcutaneous adipose tissues in men with coronary artery disease. PLoS One. 2011;6:e19908. doi:10.1371/journal.pone.0019908
  • Vacca M, Di Eusanio M, Cariello M, et al. Integrative miRNA and whole genome analyses of epicardial adipose tissue in patients with coronary atherosclerosis. Cardiovasc Res. 2016;109(2):228–239. doi:10.1093/cvr/cvv266
  • Dutour A, Achard V, Sell H, et al. Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease. J Clin Endocrinol Metabol. 2010;95:963–967. doi:10.1210/jc.2009-1222
  • Du Y, Ji Q, Cai L, et al. Association between omentin-1 expression in human epicardial adipose tissue and coronary atherosclerosis. Cardiovasc Diabetol. 2016;15:90. doi:10.1186/s12933-016-0406-5
  • Miksztowicz V, Morales C, Barchuk M, et al. Metalloproteinase 2 and 9 Activity Increase in Epicardial Adipose Tissue of Patients with Coronary Artery Disease. Curr Vasc Pharmacol. 2017;15(2):135–143. doi:10.2174/1570161114666161024124244
  • McAninch EA, Fonseca TL, Poggioli R, et al. Epicardial adipose tissue has a unique transcriptome modified in severe coronary artery disease. Obesity. 2015;23(6):1267–1278. doi:10.1002/oby.21059
  • Mazurek T, Opolski G. Pericoronary adipose tissue: a novel therapeutic target in obesity-related coronary atherosclerosis. J Am Coll Nutr. 2015;34(3):244–254. doi:10.1080/07315724.2014.933685
  • Mazurek K, Zmijewski P, Krawczyk K, et al. High intensity interval and moderate continuous cycle training in a physical education programme improves health-related fitness in young females. Biol Sport. 2016;33(2):139–144. doi:10.5604/20831862.1198626
  • Krämer A, Green J, Pollard J, et al. Causal Analysis Approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–530. doi:10.1093/bioinformatics/btt703
  • Levine DM, Haynor DR, Castle JC, et al. Pathway and gene-set activation measurement from mRNA expression data: the tissue distribution of human pathways. Genome Biol. 2006;7:R93. doi:10.1186/gb-2006-7-10-r93
  • Chen YT, Wang J, Wee ASY, et al. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves. Int J Mol Sci. 2016;17:753. doi:10.3390/ijms17050753
  • Ward J, Kanchagar C, Veksler-Lublinsky I, et al. Circulating microRNA profiles in human patients with Acetaminophen hepatotoxicity or ischemic hepatitis. Proc Natl Acad Sci USA. 2014;111:12169–12174. doi:10.1073/pnas.1412608111
  • Jeimy SB, Tasneem S, Cramer EM, et al. Multimerin 1. Platelets. 2008;19(2):83–95. doi:10.1080/09537100701832157
  • Yuan HQ, Hao YM, Ren Z, et al. Tissue Factor Pathway Inhibitor in Atherosclerosis. Clin Chim Acta. 2019;491:97–102. doi:10.1016/j.cca.2019.01.024
  • Kawai Y. β-Glucuronidase activity and mitochondrial dysfunction: the sites where flavonoid glucuronides act as anti-inflammatory agents. J Clin Biochem Nutr. 2014;54:145–150. doi:10.3164/jcbn.14-9
  • Yang Z, Wei Z, Wu X, et al. Screening of Exosomal miRNAs Derived From Subcutaneous and Visceral Adipose Tissues: determination of Targets for the Treatment of Obesity and Associated Metabolic Disorders. Mol Med Rep. 2018;18:3314–3324.
  • Hartman J, Frishman WH. Inflammation and Atherosclerosis: a Review of the Role of interleukin-6 in the Development of Atherosclerosis and the Potential for Targeted Drug Therapy. Cardiol Rev. 2014;22:147–151. doi:10.1097/CRD.0000000000000021
  • Zhu Y, Xian X, Wang Z, et al. Research Progress on the Relationship Between Atherosclerosis and Inflammation. Biomolecules. 2018;8:80. doi:10.3390/biom8030080
  • Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–1274.
  • Zha Y, Chen Y, Xu F, et al. Elevated Level of ADAMTS4 in Plasma and Peripheral Monocytes From Patients With Acute Coronary Syndrome. Clin Res Cardiol. 2010;99:781–786. doi:10.1007/s00392-010-0183-1
  • Zha Y, Chen Y, Xu F, et al. ADAMTS4 level in patients with stable coronary artery disease and acute coronary syndromes. Biomed Pharmacother. 2010;64(3):160–164. doi:10.1016/j.biopha.2009.09.012
  • Kumar S, Chen M, Li Y, et al. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE−/− mice. Sci Rep. 2016;6:31130. doi:10.1038/srep31130
  • Chatterjee TK, Stoll LL, Denning GM, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104:541–549. doi:10.1161/CIRCRESAHA.108.182998
  • Karastergiou K, Evans I, Ogston N, et al. Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol. 2010;30:1340–1346. doi:10.1161/ATVBAHA.110.204719
  • Hirata Y, Tabata M, Kurobe H, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58:248–255. doi:10.1016/j.jacc.2011.01.048
  • Farias‐Itao DS, Pasqualucci CA, Nishizawa A, et al. B Lymphocytes and Macrophages in the Perivascular Adipose Tissue Are Associated With Coronary Atherosclerosis: an Autopsy Study. J Am Heart Assoc. 2019;8:e013793. doi:10.1161/JAHA.119.013793
  • Scuruchi M, Potì F, Rodríguez-Carrio J, et al. Biglycan and atherosclerosis: lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158545. doi:10.1016/j.bbalip.2019.158545
  • Zhou H, Che Y, Fu X, et al. Interaction between tissue factor pathway inhibitor-2 gene polymorphisms and environmental factors associated with coronary atherosclerosis in a Chinese Han. J Thromb Thrombolysis. 2019;47:67–72. doi:10.1007/s11239-018-1755-6
  • Son GH, Kim Y, Lee JJ, et al. MicroRNA-548 Regulates High Mobility Group Box 1 Expression in Patients With Preterm Birth and Chorioamnionitis. Sci Rep. 2019;9:19746. doi:10.1038/s41598-019-56327-9
  • Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005;15(5):496–506. doi:10.1016/j.gde.2005.08.007
  • Tang Y, Lv B, Wang H, et al. PACAP inhibit the release and cytokine activity of HMGB1 and improve the survival during lethal endotoxemia. Int Immunopharmacol. 2008;8(12):1646–1651. doi:10.1016/j.intimp.2008.07.014
  • Chen G, Li J, Ochani M, et al. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J Leukoc Biol. 2004;76:994–1001. doi:10.1189/jlb.0404242
  • Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–195. doi:10.1038/nature00858
  • Degryse B, Bonaldi T, Scaffidi P, et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol. 2001;152:1197–1206. doi:10.1083/jcb.152.6.1197
  • Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med. 2014;276:425–443. doi:10.1111/joim.12276
  • Kuivaniemi H, Tromp G. Type III Collagen (COL3A1): gene and Protein Structure, Tissue Distribution, and Associated Diseases. Gene. 2019;707:151–171. doi:10.1016/j.gene.2019.05.003
  • Pusterla T, de Marchis F, Palumbo R, et al. High Mobility Group B2 Is Secreted by Myeloid Cells and Has Mitogenic and Chemoattractant Activities Similar to High Mobility Group B1. Autoimmunity. 2009;42(4):308–310. doi:10.1080/08916930902831845
  • Alvarez RH, Kantarjian HM, Cortes JE. Biology of Platelet-Derived Growth Factor and Its Involvement in Disease. Mayo Clin Proc. 2006;81:1241–1257. doi:10.4065/81.9.1241
  • Papadopoulos N, Lennartsson J. The PDGF/PDGFR Pathway as a Drug Target. Mol Aspects Med. 2018;62:75–88. doi:10.1016/j.mam.2017.11.007
  • Rutherford C, Martin W, Carrier M, et al. Endogenously elicited antibodies to platelet derived growth factor-BB and platelet cytosolic protein inhibit aortic lesion development in the cholesterol-fed rabbit. Int J Exp Pathol. 1997;78(1):21–32. doi:10.1046/j.1365-2613.1997.d01-237.x
  • Rutherford C, Martin W, Salame M, et al. Substantial inhibition of neo-intimal response to balloon injury in the rat carotid artery using a combination of antibodies to platelet-derived growth factor-BB and basic fibroblast growth factor. Atherosclerosis. 1997;130(1–2):45–51. doi:10.1016/S0021-9150(96)06042-X
  • Wi SM, Moon G, Kim J, et al. TAK1-ECSIT-TRAF6 complex plays a key role in the TLR4 signal to activate NF-κB. J Biol Chem. 2014;289(51):35205–35214. doi:10.1074/jbc.M114.597187
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:215.
  • Zeng X, Guo R, Dong M, et al. Contribution of TLR4 signaling in intermittent hypoxia-mediated atherosclerosis progression. J. Transl. Med. 2018;16:106. doi:10.1186/s12967-018-1479-6
  • Long F, Wang L, Yang L, et al. Screening Hub Genes in Coronary Artery Disease Based on Integrated Analysis. Cardiol J. 2018;25(3):403–411. doi:10.5603/CJ.a2017.0106
  • Xu J, Li W, Bao X, et al. Association of Putative Functional Variants in the PLAU Gene and the PLAUR Gene With Myocardial Infarction. Clin Sci. 2010;119:353–359. doi:10.1042/CS20100151
  • Li YH, Shi GY, Wu HL. The Role of Thrombomodulin in Atherosclerosis: from Bench to Bedside. Cardiovasc Hematol Agents Med Chem. 2006;4:183–187. doi:10.2174/187152506776369953
  • Xu J, Jin J, Tan S. Association of Thrombomodulin Gene Polymorphisms With Susceptibility to Atherosclerotic Diseases: a Meta-Analysis. Ann Hum Genet. 2016;80:172–181. doi:10.1111/ahg.12148
  • Wu KK, Aleksic N, Ahn C, et al. Atherosclerosis Risk in Communities Study (ARIC) Investigators. Thrombomodulin Ala455Val Polymorphism and Risk of Coronary Heart Disease. Circulation. 2001;103:1386–1389. doi:10.1161/01.CIR.103.10.1386