146
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Transthyretin and Receptor for Advanced Glycation End Product’s Differential Levels Associated with the Pathogenesis of Rheumatoid Arthritis

, , , , , ORCID Icon & ORCID Icon show all
Pages 5581-5596 | Published online: 28 Oct 2021

References

  • Smolen JS, Aletaha D, Barton A, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001.
  • WHO. Rheumatoid arthritis; 2018. Available from: www.who.int/chp/topics/rheumatic/en/. Accessed October 8, 2021.
  • Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15.
  • Zavala-Cerna MG, Martínez-García EA, Torres-Bugarín O, et al. The clinical significance of posttranslational modification of autoantigens. Clinic Rev Allerg Immunol. 2014;47:73–90.
  • Santos AL, Lindner AB. Protein posttranslational modifications: roles in aging and age-related disease. Oxid Med Cell Longev. 2017;2017:5716409.
  • Sun F, Suttapitugsakul S, Xiao H, et al. Comprehensive analysis of protein glycation reveals its potential impacts on protein degradation and gene expression in human cells. J Am Soc Mass Spectrom. 2019;30:2480–2490.
  • Li X, Buxbaum JN. Transthyretin and the brain revisited: is a neuronal synthesis of transthyretin protective in Alzheimer’s disease? Mol Neurodegener. 2011;23(6):79.
  • Gkogkolou P, Bohm M. Advanced glycation end products: key players in skin ageing? Dermatoendocrinol. 2012;4(3):259–270.
  • Tarannum A, Arif Z, Alam K, Ahmad S, Uddin M. Nitroxidized-albumin advanced glycation end product and rheumatoid arthritis. Arch Rheumatol. 2019;34(4):461–475.
  • Luzak B, Boncler M, Kosmalski M, et al. Fibrinogen glycation and presence of glucose impair fibrin polymerization-an in vitro study of isolated fibrinogen and plasma from patients with diabetes mellitus. Biomolecules. 2020;10(6):877.
  • Kennedy DM, Skillen AW, Self CH. Glycation of monoclonal antibodies impairs their ability to bind antigen. Clin Exp Immunol. 1994;98:245–251.
  • Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):1–14.
  • Parker CE, Mocanu V, Mocanu M, et al. Mass Spectrometry for post-translational modifications. In: Alzate O, editor. Neuroproteomics. Boca Raton (FL): CRC Press/Taylor & Francis; 2010.
  • Krasny L, Bland P, Kogata N, et al. SWATH mass spectrometry as a tool for quantitative profiling of the matrisome. J Proteomics. 2018;189:11–22.
  • Pereira Morais MP, Marshall D, Flower SE, et al. Analysis of protein glycation using fluorescent phenyl-boronate gel electrophoresis. Sci Rep. 2013;3(2013):1437.
  • Lee EJ, Park JH. Receptor for Advanced Glycation Endproducts (RAGE), its ligands, and soluble RAGE: potential biomarkers for diagnosis and therapeutic targets for human renal diseases. Genomics Inform. 2013;11(4):224–229.
  • Hua C, Daien CI, Combe B, Landewe R. Diagnosis, prognosis and classification of early arthritis: results of a systematic review informing the 2016 update of the EULAR recommendations for the management of early arthritis. RMD Open. 2017;3(1):e000406.
  • Biswas S, Sharma S, Saroha A, et al. Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immune-proteomics approach. PLoS One. 2013;8(2):e56246.
  • Monu, Kharb R, Sharma A, Chaddar MK, et al. Plasma proteome profiling of coronary artery disease patients: downregulation of transthyretin-an important event. Mediators Inflamm. 2020;2020:3429541.
  • Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of the chronic disease. J Proteome Res. 2009;8(2):754–769.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461.
  • Donato R. RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med. 2007;7:711–724.
  • de Groot L, Hinkema H, Westra J, et al. Advanced glycation endproducts are increased in rheumatoid arthritis patients with controlled disease. Arthritis Res Ther. 2011;13(6):R205.
  • Kong QZ, Guo LT, Yang JN, et al. Anti-inflammatory effects of TRAF-interacting protein in rheumatoid arthritis fibroblast-like synoviocytes. Mediators Inflamm. 2016;2016:3906108.
  • Zhou L, Tang X, Li X, Bai Y, Buxbaum JN, Chen G. Identification of transthyretin as a novel interacting partner for the δ subunit of GABAA receptors. PLoS One. 2019;14(1):e0210094.
  • Tan EM, Smolen JS. Historical observations contributing insights on the etiopathogenesis of rheumatoid arthritis and the role of rheumatoid factor. J Exp Med. 2016;213(10):1937–1950.
  • Zhang R, Yang X, Wang J, et al. Identification of potential biomarkers for differential diagnosis between rheumatoid arthritis and osteoarthritis via integrative genome‑wide gene expression profiling analysis. Mol Med Rep. 2019;19(1):30–40.
  • Ott C, Jacobs K, Haucke E, et al. Role of advanced glycation end products in cellular signalling. Redox Biol. 2014;2:411–429.
  • Ansari NA, Dash D. Amadori glycated proteins: role in the production of autoantibodies in diabetes mellitus and effect of inhibitors on non-enzymatic glycation. Aging Dis. 2013;4:50–56.
  • Arasteh A, Farahi S, Habibi-Rezaei M, Moosavi-Movahedi AA. Glycated albumin: an overview of the in vitro models of an in vivo potential disease marker. J Diabetes Metab Disord. 2014;13:49.
  • Spiller S, Li Y, Blüher M, Welch L, Hoffmann R. Diagnostic accuracy of protein glycation sites in long-term controlled patients with Type 2 diabetes mellitus and their prognostic potential for early diagnosis. Pharmaceuticals (Basel). 2018;11(2):38.
  • Nobecourt E, Tabet F, Lambert G, et al. Nonenzymatic glycation impairs the anti-inflammatory properties of apolipoprotein A-I. Arterioscler Thromb Vasc Biol. 2010;30(4):766–772.
  • Sabitha D, Dawson E, Tiwari S, et al. Study of glycation of transferrin and its effect on biomarkers of iron status in uncontrolled diabetes mellitus patients. J Clin Diagn Res. 2020;14(2020):BC06–BC09.
  • Buxbaum JN, Reixach N. Transthyretin: the servant of many masters. Cell Mol Life Sci. 2009;66(19):3095–3101.
  • Azevedo EP, Guimaraes-Costa AB, Bandeira-Melo C, et al. Inflammatory profiling of patients with familial amyloid polyneuropathy. BMC Neurol. 2019;19(1):146.
  • Bobbert T, Raila J, Schwarz F, et al. Relation between retinol, retinol-binding protein 4, transthyretin and carotid intima-media thickness. Atherosclerosis. 2010;213(2):549–551.
  • Mahmud SA, Binstadt BA. Autoantibodies in the pathogenesis, diagnosis, and prognosis of juvenile idiopathic arthritis. Front Immunol. 2019;9:3168.
  • Pullerits R, Bokarewa M, Dahlberg L, et al. Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Res Ther. 2005;7(4):R817–R824.
  • Drinda S, Franke S, Eidner T, et al. Decreased RAGE expression in peripheral blood mononuclear cells of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2009;27(3):483–490.
  • Lin J, He Y, Chen J, Zeng Z, Bin Y, Ou Q. Datasets of YY1 expression in rheumatoid arthritis patients. Data Brief. 2016;9:1034–1038.
  • Yoshitomi H. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. Front Immunol. 2019;19(10):1395.
  • Tobon-Velasco JC, Cuevas E, Torres-Ramos MA. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol Disord Drug Targets. 2014;13(9):1615–1626.
  • Huang JS, Guh JY, Chen HC, Hung WC, Lai YH, Chuang LY. Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. J Cell Biochem. 2001;81(1):102–113.