137
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Novel 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4-d]Pyridazinone Exert Anti-Inflammatory Activity without Acute Gastrotoxicity in the Carrageenan-Induced Rat Paw Edema Test

ORCID Icon, , , , ORCID Icon, , , & ORCID Icon show all
Pages 5739-5756 | Published online: 02 Nov 2021

References

  • Goldstein DS. How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am J Physiol Regul Integr Comp Physiol. 2019;316(4):R301–R317. doi:10.1152/ajpregu.00396.2018
  • Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435. doi:10.1038/nature07201
  • Chen Z, Ni W, Yang C, et al. Therapeutic effect of Amomum villosum on inflammatory bowel disease in rats. Front Pharmacol. 2018;9:639. doi:10.3389/fphar.2018.00639
  • Gilroy D, De Maeyer R. New insights into the resolution of inflammation. Semin Immunol. 2015;27(3):161–168. doi:10.1016/j.smim.2015.05.003
  • Lau D, Mollnau H, Eiserich JP, et al. Myeloperoxidase mediates neutrophil activation by association with CD11b/CD18 integrins. Proc Natl Acad Sci U S A. 2005;102(2):431–436. doi:10.1073/pnas.0405193102
  • Haegens A, Heeringa P, van Suylen RJ, et al. Myeloperoxidase deficiency attenuates lipopolysaccharide-induced acute lung inflammation and subsequent cytokine and chemokine production. J Immunol. 2009;182(12):7990–7996. doi:10.4049/jimmunol.0800377
  • Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev. 2020;159:133–169.
  • Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147(2):227–235.
  • Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. doi:10.1016/j.bcp.2020.114147
  • Malinka W, Redzicka A, Lozach O. New derivatives of pyrrolo[3,4-d]pyridazinone and their anticancer effects. Farmaco. 2004;59(6):457–462. doi:10.1016/j.farmac.2004.03.002
  • Mogilski S, Kubacka M, Redzicka A, et al. Antinociceptive, anti-inflammatory and smooth muscle relaxant activities of the pyrrolo[3,4-d]pyridazinone derivatives: possible mechanisms of action. Pharmacol Biochem Behav. 2015;133:99–110. doi:10.1016/j.pbb.2015.03.019
  • Szczukowski Ł, Redzicka A, Wiatrak B, et al. Design, synthesis, biological evaluation and in silico studies of novel pyrrolo[3,4-d]pyridazinone derivatives with promising anti-inflammatory and antioxidant activity. Bioorg Chem. 2020;102:104035. doi:10.1016/j.bioorg.2020.104035
  • Manjunatha K, Poojary B, Lobo PL, Fernandes J, Kumari NS. Synthesis and biological evaluation of some 1,3,4-oxadiazole derivatives. Eur J Med Chem. 2010;45(11):5225–5233. doi:10.1016/j.ejmech.2010.08.039
  • Palkar MB, Singhai AS, Ronad PM, et al. Synthesis, pharmacological screening and in silico studies of new class of diclofenac analogues as a promising anti-inflammatory agents. Bioorg Med Chem. 2014;22(10):2855–2866. doi:10.1016/j.bmc.2014.03.043
  • Koksal M, Ozkan-Dagliyan I, Ozyazici T, et al. Some novel mannich bases of 5-(3,4-dichlorophenyl)-1,3,4-oxadiazole-2(3 H)-one and their anti-inflammatory activity. Arch Pharm. 2017;350(9):1700153. doi:10.1002/ardp.201700153
  • Avci A, Taşci H, Kandemir Ü, Can ÖD, Gökhan-Kelekçi N, Tozkoparan B. Synthesis, characterization, and in vivo pharmacological evaluation of novel mannich bases derived from 1,2,4-triazole containing a naproxen moiety. Bioorg Chem. 2020;100:103892. doi:10.1016/j.bioorg.2020.103892
  • Wakulik K, Wiatrak B, Szczukowski Ł, et al. Effect of novel pyrrolo[3,4- d]pyridazinone derivatives on lipopolysaccharide-induced neuroinflammation. Int J Mol Sci. 2020;21(7):2575. doi:10.3390/ijms21072575
  • Szandruk-Bender M, Wiatrak B, Szczukowski Ł, et al. Novel 1,3,4-oxadiazole derivatives of pyrrolo[3,4-d]pyridazinone exert antinociceptive activity in the tail-flick and formalin test in rodents and reveal reduced gastrotoxicity. Int J Mol Sci. 2020;21(24):9685. doi:10.3390/ijms21249685
  • Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139(2):267–284. doi:10.1016/j.cell.2009.09.028
  • Florentino IF, Silva DPB, Galdino PM, et al. Antinociceptive and anti-inflammatory effects of Memora nodosa and allantoin in mice. J Ethnopharmacol. 2016;186:298–304. doi:10.1016/j.jep.2016.04.010
  • Malinka W, Redzicka A, Jastrzębska-Więsek M, et al. Derivatives of pyrrolo[3,4-d]pyridazinone, a new class of analgesic agents. Eur J Med Chem. 2011;46(10):4992–4999. doi:10.1016/j.ejmech.2011.08.006
  • Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proc Soc Exp Biol Med. 1962;111(3):544–547. doi:10.3181/00379727-111-27849
  • Mert T, Yaman S. Pro-inflammatory or anti-inflammatory effects of pulsed magnetic field treatments in rats with experimental acute inflammation. Environ Sci Pollut Res Int. 2020;27(25):31543–31554. doi:10.1007/s11356-020-09401-z
  • Jain D, Mathur SR, Iyer VK. Cell blocks in cytopathology: a review of preparative methods, utility in diagnosis and role in ancillary studies. Cytopathology. 2014;25(6):356–371.
  • Szabo S, Trier JS, Brown A, Schnoor J, Homan HD, Bradford JC. A quantitative method for assessing the extent of experimental gastric erosions and ulcers. J Pharmacol Methods. 1985;13(1):59–66. doi:10.1016/0160-5402(85)90068-3
  • Necas J, Bartosikova L. Carrageenan: a review. Vet Med. 2013;58(4):187–205. doi:10.17221/6758-VETMED
  • Fehrenbacher JC, Vasko MR, Duarte DB. Models of inflammation: Carrageenan- or complete Freund’s Adjuvant (CFA)-induced edema and hypersensitivity in the rat. Curr Protoc Pharmacol. 2012;Chapter 5:Unit5.4.
  • Abu-Taweel GM, Mohsen GAM, Antonisamy P, et al. Spirulina consumption effectively reduces anti-inflammatory and pain related infectious diseases. J Infect Public Health. 2019;12(6):777–782. doi:10.1016/j.jiph.2019.04.014
  • Zhang H, Shang C, Tian Z, et al. Diallyl disulfide suppresses inflammatory and oxidative machineries following carrageenan injection-induced paw edema in mice. Mediators Inflamm. 2020;2020:8508906. doi:10.1155/2020/8508906
  • Otterness IG, Wiseman EH, Gans DJ. A comparison of the carrageenan edema test and ultraviolet light-induced erythema test as predictors of the clinical dose in rheumatoid arthritis. Agents Actions. 1979;9(2):177–183. doi:10.1007/BF02024731
  • Ben Khedir S, Mzid M, Bardaa S, Moalla D, Sahnoun Z, Rebai T. In vivo evaluation of the anti-inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid Based Complement Alternat Med. 2016;2016:6108203. doi:10.1155/2016/6108203
  • Karim N, Khan I, Khan W, et al. Anti-nociceptive and anti-inflammatory activities of asparacosin a involve selective cyclooxygenase 2 and inflammatory cytokines inhibition: an in-vitro, in-vivo, and in-silico approach. Front Immunol. 2019;10:581. doi:10.3389/fimmu.2019.00581
  • Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain. 2007;8(2):127–136. doi:10.1016/j.jpain.2006.06.010
  • Posadas I, Bucci M, Roviezzo F, et al. Carrageenan-induced mouse paw oedema is biphasic, age-weight dependent and displays differential nitric oxide cyclooxygenase-2 expression. Br J Pharmacol. 2004;142(2):331–338. doi:10.1038/sj.bjp.0705650
  • Vysakh A, Jayesh K, Helen LR, Jyothis M, Latha MS. Acute oral toxicity and anti-inflammatory evaluation of methanolic extract of Rotula aquatica roots in Wistar rats. J Ayurveda Integr Med. 2020;11(1):45–52. doi:10.1016/j.jaim.2017.09.007
  • Nantel F, Denis D, Gordon R, et al. Distribution and regulation of cyclooxygenase-2 in carrageenan-induced inflammation. Br J Pharmacol. 1999;128(4):853–859. doi:10.1038/sj.bjp.0702866
  • Zhang J, Wang H, Wang T, et al. Anti-inflammatory activity of Yanshu spraying agent in animal models. Exp Ther Med. 2013;5(1):73–76. doi:10.3892/etm.2012.761
  • Nakanishi M, Rosenberg DW. Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol. 2013;35(2):123–137. doi:10.1007/s00281-012-0342-8
  • Aoki T, Narumiya S. Prostaglandins and chronic inflammation. Trends Pharmacol Sci. 2012;33(6):304–311. doi:10.1016/j.tips.2012.02.004
  • Ozyazici T, Gurdal EE, Orak D, et al. Synthesis, anti-inflammatory activity, and molecular docking studies of some novel mannich bases of the 1,3,4-oxadiazole-2(3H)-thione scaffold. Arch Pharm. 2020;353(7):e2000061. doi:10.1002/ardp.202000061
  • Li CL, Tan LH, Wang YF, et al. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma coptidis in vitro and in vivo. Phytomedicine. 2019;52:272–283. doi:10.1016/j.phymed.2018.09.228
  • Cai C, Chen Y, Zhong S, et al. Anti-inflammatory activity of N-butanol extract from Ipomoea stolonifera in vivo and in vitro. PLoS One. 2014;9(4):e95931. doi:10.1371/journal.pone.0095931
  • Heeba GH, Mahmoud ME, El Hanafy AA. Anti-inflammatory potential of curcumin and quercetin in rats: role of oxidative stress, heme oxygenase-1 and TNF-α. Toxicol Ind Health. 2014;30(6):551–560. doi:10.1177/0748233712462444
  • Cidade AF, Vasconcelos PA, Silva DPB, et al. Design, synthesis and pharmacological evaluation of new anti-inflammatory compounds. Eur J Pharmacol. 2016;791:195–204. doi:10.1016/j.ejphar.2016.08.033
  • Kumar KP, Nicholls AJ, Wong CHY. Partners in crime: neutrophils and monocytes/macrophages in inflammation and disease. Cell Tissue Res. 2018;371(3):551–565. doi:10.1007/s00441-017-2753-2
  • Othman A, Sekheri M, Filep JG. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J. 2021. doi:10.1111/febs.15803
  • El Kebir D, József L, Pan W, et al. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med. 2009;180(4):311–319. doi:10.1164/rccm.200810-1601OC
  • Bezerra Rodrigues Dantas L, Silva ALM, Da silva Júnior CP, et al. Nootkatone inhibits acute and chronic inflammatory responses in mice. Molecules. 2020;25(9):2181. doi:10.3390/molecules25092181
  • Sin YM, Pook SH, Tan TM, Pettersson A, Kara AU, The WF. Changes in glutathione and its associated enzymes during carrageenan-induced acute inflammation in mice. Comp Biochem Physiol. 1997;116(3):191–195.
  • Palaska E, Sahin G, Kelicen P, Durlu NT, Altinok G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco. 2002;57(2):101–107. doi:10.1016/S0014-827X(01)01176-4
  • Begum MM, Islam A, Begum R, et al. Ethnopharmacological inspections of organic extract of Oroxylum indicum in rat models: a promising natural gift. Evid Based Complement Alternat Med. 2019;2019:1562038. doi:10.1155/2019/1562038
  • Naughton CA. Drug-induced nephrotoxicity. Am Fam Physician. 2008;78(6):743–750.
  • Sadek B, Hamruoni AM, Adem A. Anti-inflammatory agents of the carbamoylmethyl ester class: synthesis, characterization, and pharmacological evaluation. J Inflamm Res. 2013;6:35–43. doi:10.2147/JIR.S39743
  • Bjarnason I, Scarpignato C, Holmgren E, Olszewski M, Rainsford KD, Lanas A. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154(3):500–514. doi:10.1053/j.gastro.2017.10.049
  • Sriuttha P, Sirichanchuen B, Permsuwan U. Hepatotoxicity of nonsteroidal anti-inflammatory drugs: a systematic review of randomized controlled trials. Int J Hepatol. 2018;2018:5253623. doi:10.1155/2018/5253623
  • Saidu Y, Bilbis LS, Lawal M, Isezuo SA, Hassan SW, Abbas AY. Acute and sub-chronic toxicity studies of crude aqueous extract of Albizzia chevalieri Harms (Leguminosae). Asian J Biochem. 2007;2(4):224–236. doi:10.3923/ajb.2007.224.236
  • Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology. 2008;245(3):194–205. doi:10.1016/j.tox.2007.11.021
  • Junior SDA, Pereira PM, de Souza Tótoli V, et al. Incorporation of indomethacin into a mesoporous silica nanoparticle enhances the anti-inflammatory effect indomethacin into a mesoporous silica. Eur J Pharm Sci. 2021;157:105601. doi:10.1016/j.ejps.2020.105601
  • Deng X, Stachlewitz RF, Liguori MJ, et al. Modest inflammation enhances diclofenac hepatotoxicity in rats: role of neutrophils and bacterial translocation. J Pharmacol Exp Ther. 2006;319(3):1191–1199. doi:10.1124/jpet.106.110247
  • Kim SY, Moon A. Drug-induced nephrotoxicity and its biomarkers. Biomol Ther. 2012;20(3):268–272. doi:10.4062/biomolther.2012.20.3.268