64
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Single-Nucleotide Polymorphism LncRNA AC008392.1/rs7248320 in CARD8 is Associated with Kawasaki Disease Susceptibility in the Han Chinese Population

, , ORCID Icon, , , , , , , & show all
Pages 4809-4816 | Published online: 21 Sep 2021

References

  • McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for Health Professionals From the American Heart Association. Circulation. 2017;135(17):e927–e999. doi:10.1161/cir.0000000000000484
  • Newburger JW, Takahashi M, Burns JC. Kawasaki disease. J Am Coll Cardiol. 2016;67(14):1738–1749. doi:10.1016/j.jacc.2015.12.073
  • Noval Rivas M, Arditi M. Kawasaki disease: pathophysiology and insights from mouse models. Nat Rev Rheumatol. 2020;16(7):391–405. doi:10.1038/s41584-020-0426-0
  • Gersony WM. The adult after Kawasaki disease the risks for late coronary events. J Am Coll Cardiol. 2009;54(21):1921–1923. doi:10.1016/j.jacc.2009.06.057
  • Gordon JB, Kahn AM, Burns JC. When children with Kawasaki disease grow up: myocardial and vascular complications in adulthood. J Am Coll Cardiol. 2009;54(21):1911–1920. doi:10.1016/j.jacc.2009.04.102
  • Uehara R, Belay ED. Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J Epidemiol. 2012;22(2):79–85. doi:10.2188/jea.je20110131
  • Belkaibech S, Potter BJ, Kang H, et al. Maternal autoimmune disorders and risk of Kawasaki disease in Offspring. J Pediatr. 2020;222:240–243.e241. doi:10.1016/j.jpeds.2020.02.016
  • Rivas-Larrauri F, Aguilar-Zanela L, Castro-Oteo P, et al. Kawasaki disease and immunodeficiencies in children: case reports and literature review. Rheumatol Int. 2019;39(10):1829–1838. doi:10.1007/s00296-019-04382-w
  • Marrani E, Burns JC, Cimaz R. How should we classify Kawasaki disease? Front Immunol. 2018;9:2974. doi:10.3389/fimmu.2018.02974
  • Sakurai Y. Autoimmune aspects of Kawasaki disease. J Investig Allergol Clin Immunol. 2019;29(4):251–261. doi:10.18176/jiaci.0300
  • Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res. 2021. doi:10.1093/cvr/cvab010
  • Wang WT, He M, Shimizu C, et al. Inflammasome activation in children with Kawasaki disease and multisystem inflammatory syndrome. Arterioscler Thromb Vasc Biol. 2021;41(9):2509–2511. doi:10.1161/atvbaha.121.316210
  • Anzai F, Watanabe S, Kimura H, et al. Crucial role of NLRP3 inflammasome in a murine model of Kawasaki disease. J Mol Cell Cardiol. 2020;138:185–196. doi:10.1016/j.yjmcc.2019.11.158
  • Jia C, Zhang J, Chen H, et al. Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathepsin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis. 2019;10(10):778. doi:10.1038/s41419-019-2021-3
  • Sundel RP. Kawasaki disease. Rheum Dis Clin North Am. 2015;41(1):63–73, viii. doi:10.1016/j.rdc.2014.09.010
  • Onouchi Y. Genetics of Kawasaki disease: what we know and don’t know. Circ J. 2012;76(7):1581–1586. doi:10.1253/circj.cj-12-0568
  • Kumrah R, Vignesh P, Rawat A, Singh S. Immunogenetics of Kawasaki disease. Clin Rev Allergy Immunol. 2020;59(1):122–139. doi:10.1007/s12016-020-08783-9
  • Burgner D, Davila S, Breunis WB, et al. A genome-wide association study identifies novel and functionally related susceptibility Loci for Kawasaki disease. PLoS Genet. 2009;5(1):e1000319. doi:10.1371/journal.pgen.1000319
  • Khor CC, Davila S, Breunis WB, et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat Genet. 2011;43(12):1241–1246. doi:10.1038/ng.981
  • Lee YC, Kuo HC, Chang JS, et al. Two new susceptibility loci for Kawasaki disease identified through genome-wide association analysis. Nat Genet. 2012;44(5):522–525. doi:10.1038/ng.2227
  • Onouchi Y, Ozaki K, Burns JC, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet. 2012;44(5):517–521. doi:10.1038/ng.2220
  • Lin MT, Hsu CL, Chen PL, et al. A genome-wide association analysis identifies novel susceptibility loci for coronary arterial lesions in patients with Kawasaki disease. Transl Res. 2013;161(6):513–515. doi:10.1016/j.trsl.2013.02.002
  • Kim JJ, Yun SW, Yu JJ, et al. Common variants in the CRP promoter are associated with a high C-reactive protein level in Kawasaki disease. Pediatr Cardiol. 2015;36(2):438–444. doi:10.1007/s00246-014-1032-1
  • Kuo HC, Li SC, Guo MM, et al. Genome-wide association study identifies novel susceptibility genes associated with coronary artery aneurysm formation in Kawasaki disease. PLoS One. 2016;11(5):e0154943. doi:10.1371/journal.pone.0154943
  • Kwon YC, Kim JJ, Yun SW, et al. Male-specific association of the FCGR2A His167Arg polymorphism with Kawasaki disease. PLoS One. 2017;12(9):e0184248. doi:10.1371/journal.pone.0184248
  • Razmara M, Srinivasula SM, Wang L, et al. CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem. 2002;277(16):13952–13958. doi:10.1074/jbc.M107811200
  • Ito S, Hara Y, Kubota T. CARD8 is a negative regulator for NLRP3 inflammasome, but mutant NLRP3 in cryopyrin-associated periodic syndromes escapes the restriction. Arthritis Res Ther. 2014;16(1):R52. doi:10.1186/ar4483
  • Mao L, Kitani A, Similuk M, et al. Loss-of-function CARD8 mutation causes NLRP3 inflammasome activation and Crohn’s disease. J Clin Invest. 2018;128(5):1793–1806. doi:10.1172/jci98642
  • Wang H, Xu P, Liao D, et al. Association between NLPR1, NLPR3, and P2X7R gene polymorphisms with partial seizures. Biomed Res Int. 2017;2017:9547902. doi:10.1155/2017/9547902
  • Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832. doi:10.1016/j.cell.2010.01.040
  • Ekman AK, Verma D, Fredrikson M, Bivik C, Enerbäck C. Genetic variations of NLRP1: susceptibility in psoriasis. Br J Dermatol. 2014;171(6):1517–1520. doi:10.1111/bjd.13178
  • Taabazuing CY, Griswold AR, Bachovchin DA. The NLRP1 and CARD8 inflammasomes. Immunol Rev. 2020;297(1):13–25. doi:10.1111/imr.12884
  • Bivik C, Verma D, Winge MC, et al. Genetic variation in the inflammasome and atopic dermatitis susceptibility. J Invest Dermatol. 2013;133(10):2486–2489. doi:10.1038/jid.2013.168
  • Fontalba A, Martinez-Taboada V, Gutierrez O, et al. Deficiency of the NF-kappaB inhibitor caspase activating and recruitment domain 8 in patients with rheumatoid arthritis is associated with disease severity. J Immunol. 2007;179(7):4867–4873. doi:10.4049/jimmunol.179.7.4867
  • Kastbom A, Johansson M, Verma D, Söderkvist P, Rantapää-Dahlqvist S. CARD8 p.C10X polymorphism is associated with inflammatory activity in early rheumatoid arthritis. Ann Rheum Dis. 2010;69(4):723–726. doi:10.1136/ard.2008.106989
  • Zhang ZT, Ma XJ, Zong Y, et al. Is the CARD8 rs2043211 polymorphism associated with susceptibility to Crohn’s disease? A meta-analysis. Autoimmunity. 2015;48(8):524–531. doi:10.3109/08916934.2015.1045581
  • Chen Y, Ren X, Li C, et al. CARD8 rs2043211 polymorphism is associated with gout in a Chinese male population. Cell Physiol Biochem. 2015;35(4):1394–1400. doi:10.1159/000373960
  • Kastbom A, Klingberg E, Verma D, et al. Genetic variants in CARD8 but not in NLRP3 are associated with ankylosing spondylitis. Scand J Rheumatol. 2013;42(6):465–468. doi:10.3109/03009742.2013.779020
  • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–874. doi:10.1038/nrg3074
  • Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. doi:10.1038/nrg.2015.10
  • Lv Z, Xu Q, Yuan Y. A systematic review and meta-analysis of the association between long non-coding RNA polymorphisms and cancer risk. Mutat Res. 2017;771:1–14. doi:10.1016/j.mrrev.2016.10.002
  • Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118. doi:10.1038/s41580-020-00315-9
  • Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol Dis. 2012;46(2):245–254. doi:10.1016/j.nbd.2011.12.006
  • Huang R, Wang X, Zhang W, et al. Down-regulation of lncRNA DGCR5 correlates with poor prognosis in hepatocellular carcinoma. Cell Physiol Biochem. 2016;40(3–4):707–715. doi:10.1159/000452582
  • Lv X, Cui Z, Li H, et al. Polymorphism in lncRNA AC008392.1 and its interaction with smoking on the risk of lung cancer in a Chinese population. Cancer Manag Res. 2018;10:1377–1387. doi:10.2147/cmar.S160818
  • Yin J, Wen J, Hang D, et al. Expression quantitative trait loci for CARD8 contributes to risk of two infection-related cancers–hepatocellular carcinoma and cervical cancer. PLoS One. 2015;10(7):e0132352. doi:10.1371/journal.pone.0132352
  • Walter NA, McWeeney SK, Peters ST, et al. Single-nucleotide polymorphism masking. Alcohol Res Health. 2008;31(3):270–271.
  • Srinivasan S, Clements JA, Batra J. Single nucleotide polymorphisms in clinics: fantasy or reality for cancer? Crit Rev Clin Lab Sci. 2016;53(1):29–39. doi:10.3109/10408363.2015.1075469
  • Minotti L, Agnoletto C, Baldassari F, Corrà F, Volinia S. SNPs and somatic mutation on long non-coding RNA: new frontier in the cancer studies? High Throughput. 2018;7(4):34. doi:10.3390/ht7040034
  • Barter MJ, Gomez R, Hyatt S, et al. The long non-coding RNA ROCR contributes to SOX9 expression and chondrogenic differentiation of human mesenchymal stem cells. Development. 2017;144(24):4510–4521. doi:10.1242/dev.152504
  • Yang Q, Xu E, Dai J, et al. A novel long noncoding RNA AK001796 acts as an oncogene and is involved in cell growth inhibition by resveratrol in lung cancer. Toxicol Appl Pharmacol. 2015;285(2):79–88. doi:10.1016/j.taap.2015.04.003
  • Zhan Y, Li Y, Guan B, et al. Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. Oncotarget. 2017;8(44):76656–76665. doi:10.18632/oncotarget.20795
  • Li P, Zhang G, Li J, et al. Long noncoding RNA RGMB-AS1 indicates a poor prognosis and modulates cell proliferation, migration and invasion in lung adenocarcinoma. PLoS One. 2016;11(3):e0150790. doi:10.1371/journal.pone.0150790
  • Quan M, Chen J, Zhang D. Exploring the secrets of long noncoding RNAs. Int J Mol Sci. 2015;16(3):5467–5496. doi:10.3390/ijms16035467
  • Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–1797. doi:10.1101/gr.137323.112
  • Singh S, Vignesh P, Burgner D. The epidemiology of Kawasaki disease: a global update. Arch Dis Child. 2015;100(11):1084–1088. doi:10.1136/archdischild-2014-307536
  • Yanagawa H, Nakamura Y, Yashiro M, et al. Incidence of Kawasaki disease in Japan: the nationwide surveys of 1999–2002. Pediatr Int. 2006;48(4):356–361. doi:10.1111/j.1442-200X.2006.02221.x
  • Che D, Pi L, Xu Y, et al. TBXA2R rs4523 G allele is associated with decreased susceptibility to Kawasaki disease. Cytokine. 2018;111:216–221. doi:10.1016/j.cyto.2018.08.029
  • Peng Q, Chen C, Zhang Y, et al. Single-nucleotide polymorphism rs2290692 in the 3ʹUTR of ITPKC associated with susceptibility to Kawasaki disease in a Han Chinese population. Pediatr Cardiol. 2012;33(7):1046–1053. doi:10.1007/s00246-012-0223-x
  • Kuo HC, Chao MC, Hsu YW, et al. CD40 Gene polymorphisms associated with susceptibility and coronary artery lesions of Kawasaki disease in the Taiwanese population. ScientificWorldJournal. 2012;2012:520865. doi:10.1100/2012/520865
  • Miao L, Wang B, Ji J, et al. CARD8 polymorphism rs2043211 protects against noise-induced hearing loss by causing the dysfunction of CARD8 protein. Environ Sci Pollut Res Int. 2021;28(7):8626–8636. doi:10.1007/s11356-020-11193-1
  • Yu P, Liu B, Hao S, Xing R, Li Y. A new risk polymorphism rs10403848 of CARD8 significantly associated with psoriasis vulgaris in northeastern China. Biomed Res Int. 2020;2020:2867505. doi:10.1155/2020/2867505
  • Wen J, Liu Y, Liu J, et al. Expression quantitative trait loci in long non-coding RNA ZNRD1-AS1 influence both HBV infection and hepatocellular carcinoma development. Mol Carcinog. 2015;54(11):1275–1282. doi:10.1002/mc.22200