116
Views
7
CrossRef citations to date
0
Altmetric
Original Research

Preventive Effect of Flavonoid Extract from the Peel of Gonggan (Citrus reticulata Blanco Var. Gonggan) on CCl4-Induced Acute Liver Injury in Mice

, , & ORCID Icon
Pages 5111-5121 | Published online: 05 Oct 2021

References

  • Fyfe B, Zaldana F, Liu C. The pathology of acute liver failure. Clin Liver Dis. 2018;22(2):257–268. doi:10.1016/j.cld.2018.01.003
  • Gu X, Manautou JE. Molecular mechanisms underlying chemical liver injury. Expert Rev Mol Med. 2012;14:e4. doi:10.1017/S1462399411002110
  • Bernal W, Auzinger G, Dhawan A, et al. Acute liver failure. Lancet. 2010;376(9736):190–201. doi:10.1016/S0140-6736(10)60274-7
  • Tipoe GL, Leung TM, Liong EC, et al. Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology. 2010;273(1–3):45–52. doi:10.1016/j.tox.2010.04.014
  • Liu Y, Wen PH, Zhang XX, et al. Breviscapine ameliorates CCl4-induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med. 2018;42(2):755–768. doi:10.3892/ijmm.2018.3651
  • Xu T, Zheng L, Xu L, et al. Protective effects of dioscin against alcohol-induced liver injury. Arch Toxicol. 2014;88(3):739–753. doi:10.1007/s00204-013-1148-8
  • Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62(1):1–20. doi:10.1080/01635580903191585
  • Sobeh M, Mahmoud MF, Petruk G, et al. Syzygium aqueum: a polyphenol- rich leaf extract exhibits antioxidant, hepatoprotective, pain-killing and anti-inflammatory activities in animal models. Front Pharmacol. 2018;9:566. doi:10.3389/fphar.2018.00566
  • Xie W, Wang M, Chen C, et al. Hepatoprotective effect of isoquercitrin against Acetaminophen-induced liver injury. Life Sci. 2016;152:180–189. doi:10.1016/j.lfs.2016.04.002
  • Sobeh M, Youssef FS, Esmat A, et al. High resolution UPLC-MS/MS profiling of polyphenolics in the methanol extract of Syzygium samarangense leaves and its hepatoprotective activity in rats with CCl4-induced hepatic damage. Food Chem Toxicol. 2018;113:145–153. doi:10.1016/j.fct.2018.01.031
  • Shu Y, He D, Li W, et al. Hepatoprotective effect of Citrus aurantium L. against APAP-induced liver injury by regulating liver lipid metabolism and apoptosis. Int J Biol Sci. 2020;16(5):752–765. doi:10.7150/ijbs.40612
  • Lee EY, Kim SH, Chang SN, et al. Efficacy of polymethoxylated flavonoids from Citrus depressa extract on alcohol-induced liver injury in mice. Biotechnol Bioproc E. 2019;24:907–914. doi:10.1007/s12257-019-0310-4
  • Choi BK, Kim TW, Lee DR, et al. A polymethoxy flavonoids-rich Citrus aurantium extract ameliorates ethanol-induced liver injury through modulation of AMPK and Nrf2-related signals in a binge drinking mouse model. Phytother Res. 2015;29(10):1577–1584. doi:10.1002/ptr.5415
  • Yamaura K, Nakayama N, Shimada M, et al. Protective effects of natsumikan (Citrus natsudaidai) extract on Acetaminophen-induced lethal hepatotoxicity in mice. Pharmacognosy Res. 2012;4(4):234–236. doi:10.4103/0974-8490.102274
  • Akachi T, Shiina Y, Ohishi Y, et al. Hepatoprotective effects of flavonoids from shekwasha (Citrus depressa) against D-galactosamine-induced liver injury in rats. J Nutr Sci Vitaminol (Tokyo). 2010;56(1):60–67. doi:10.3177/jnsv.56.60
  • He Z, Li X, Chen H, et al. Nobiletin attenuates lipopolysaccharide/D‑galactosamine‑induced liver injury in mice by activating the Nrf2 antioxidant pathway and subsequently inhibiting NF‑κB‑mediated cytokine production. Mol Med Rep. 2016;14(6):5595–5600. doi:10.3892/mmr.2016.5943
  • Dong D, Xu L, Yin L, et al. Naringin prevents carbon tetrachloride-induced acute liver injury in mice. J Funct Foods. 2015;12:179–191. doi:10.1016/j.jff.2014.11.020
  • Zarezade V, Moludi J, Mostafazadeh M, et al. Antioxidant and hepatoprotective effects of Artemisia dracunculus against CCl4-induced hepatotoxicity in rats. Avicenna J Phytomed. 2018;8(1):51–62.
  • Tripoli E, Guardia ML, Giammanco S, et al. Citrus flavonoids: molecular structure, biological activity and nutritional properties: a review. Food Chem. 2007;104(2):466–479. doi:10.1016/j.foodchem.2006.11.054
  • Sharma K, Mahato N, Lee Y. Extraction, characterization and biological activity of citrus flavonoids. Rev Chem Eng. 2019;35:265–284. doi:10.1515/revce-2017-0027
  • Prasad KN, Kong KW, Ramanan RN, et al. Determination and optimization of flavonoid and extract yield from brown Mango using response surface methodology. Sep Sci Technol. 2012;47(1):73–80. doi:10.1080/01496395.2011.606257
  • Wu Y, Sun H, Yi R, et al. Malus hupehensis leaves extract attenuates obesity, inflammation, and dyslipidemia by modulating lipid metabolism and oxidative stress in high-fat diet-induced obese mice. J Food Biochem. 2020;44:e13484. doi:10.1111/jfbc.13484
  • Wang R, Yang Z, Zhang J, et al. Liver injury induced by carbon tetrachloride in mice is prevented by the antioxidant capacity of Anji White Tea polyphenols. Antioxidants. 2019;8(3):64. doi:10.3390/antiox8030064
  • Niu X, Liu F, Li W, et al. Hepatoprotective effect of fraxin against carbon tetrachloride-induced hepatotoxicity in vitro and in vivo through regulating hepatic antioxidant, inflammation response and the MAPK-NF-κB signaling pathway. Biomed Pharmacother. 2017;95:1091–1102. doi:10.1016/j.biopha.2017.09.029
  • Liu B, Li J, Yi R, et al. Preventive effect of alkaloids from Lotus plumule on acute liver injury in mice. Foods. 2019;8(1):36. doi:10.3390/foods8010036
  • Gao Z, Gao W, Zeng SL, et al. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods. 2018;40:498–509. doi:10.1016/j.jff.2017.11.036
  • Bondonno NP, Dalgaard F, Kyrø C, et al. Flavonoid intake is associated with lower mortality in the Danish diet cancer and health cohort. Nat Commun. 2019;10(1):3651. doi:10.1038/s41467-019-11622-x
  • Clawson GA. Mechanisms of carbon tetrachloride hepatotoxicity. Pathol Immunopathol Res. 1989;8(2):104–112. doi:10.1159/000157141
  • Jia R, Cao LP, Du JL, et al. Effects of carbon tetrachloride on oxidative stress, inflammatory response and hepatocyte apoptosis in common carp (Cyprinus carpio). Aquat Toxicol. 2014;152:11–19. doi:10.1016/j.aquatox.2014.02.014
  • Weber LW, Boll M, Stampfl A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 2003;33(2):105–136. doi:10.1080/713611034
  • Birben E, Sahiner UM, Sackesen CE, et al. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19. doi:10.1097/WOX.0b013e3182439613
  • Kiso K, Ueno S, Fukuda M, et al. The role of Kupffer cells in carbon tetrachloride intoxication in mice. Biol Pharm Bull. 2012;35(6):980–983. doi:10.1248/bpb.35.980
  • Ren X, Li X, Jia L, et al. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. FASEB J. 2017;31(2):711–718. doi:10.1096/fj.201600840R
  • Sato A, Nakashima H, Nakashima M, et al. Involvement of the TNF and FasL produced by CD11b Kupffer cells/macrophages in CCl4-induced acute hepatic injury. PLoS One. 2014;9(3):e92515. doi:10.1371/journal.pone.0092515
  • Mohammadi S, Karimzadeh Bardei L, Hojati V, et al. Anti-inflammatory effects of curcumin on insulin resistance index, levels of interleukin-6, C-reactive Protein, and liver histology in polycystic ovary syndrome-induced rats. Cell J. 2017;19(3):425–433. doi:10.22074/cellj.2017.4415
  • Negash AA, Ramos HJ, Crochet N, et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog. 2013;9(4):e1003330. doi:10.1371/journal.ppat.1003330
  • Wesemann DR, Benveniste EN. STAT-1 alpha and IFN-gamma as modulators of TNF-alpha signaling in macrophages: regulation and functional implications of the TNF receptor 1: STAT-1alpha complex. J Immunol. 2003;171(10):5313–5319. doi:10.4049/jimmunol.171.10.5313
  • He Y, Sun Q. IFN-γ induces upregulation of TNF-α, downregulation of MMP-2 and MMP-9 expressions in abortion rat. Eur Rev Med Pharmacol Sci. 2018;22(15):4762–4767. doi:10.26355/eurrev_201808_1560
  • Chen XM, Tait AR, Kitts DD. Flavonoid composition of Orange peel and its association with antioxidant and anti-inflammatory activities. Food Chem. 2017;218:15–21. doi:10.1016/j.foodchem.2016.09.016
  • Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem. 2001;8(2):135–153. doi:10.2174/0929867013373723
  • Abhithaj J, Arun KG, Sharanya CS, et al. Isozymes inhibited by active site blocking: versatility of calcium indifferent hesperidin binding to phospholipase A2 and its significance. J Recept Signal Transduct Res. 2019;39(1):60–66. doi:10.1080/10799893.2019.1606239
  • Cui Y, Wu J, Jung SC, et al. Anti-neuroinflammatory activity of nobiletin on suppression of microglial activation. Biol Pharm Bull. 2010;33(11):1814–1821. doi:10.1248/bpb.33.1814
  • Ho SC, Kuo CT. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem Toxicol. 2014;71:176–182. doi:10.1016/j.fct.2014.06.014
  • Wang Y, Zang W, Ji S, et al. Three polymethoxyflavones purified from Ougan (Citrus reticulata Cv. Suavissima) inhibited LPS-induced NO elevation in the neuroglia BV-2 cell line via the JAK2/STAT3 pathway. Nutrients. 2019;11(4):791. doi:10.3390/nu11040791
  • Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. 2015;88(PtB):314–336. doi:10.1016/j.freeradbiomed.2015.05.036
  • More VR, Cheng Q, Donepudi AC, et al. Alcohol cirrhosis alters nuclear receptor and drug transporter expression in human liver. Drug Metab Dispos. 2013;41(5):1148–1155. doi:10.1124/dmd.112.049676
  • Liu WY, Liou SS, Hong TY, et al. Protective effects of hesperidin (Citrus Flavonone) on high glucose induced oxidative stress and apoptosis in a cellular model for diabetic retinopathy. Nutrients. 2017;9(12):1312. doi:10.3390/nu9121312
  • Hong Y, An Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling. Arch Pharm Res. 2018;41(6):655–663. doi:10.1007/s12272-015-0662-z
  • Park HY, Ha SK, Eom H, et al. Narirutin fraction from citrus peels attenuates alcoholic liver disease in mice. Food Chem Toxicol. 2013;55:637–644. doi:10.1016/j.fct.2013.01.060
  • Mahmoud AM, Mohammed HM, Khadrawy SM, et al. Hesperidin protects against chemically induced hepatocarcinogenesis via modulation of Nrf2/ARE/HO-1, PPARγ and TGF-β1/Smad3 signaling, and amelioration of oxidative stress and inflammation. Chem Biol Interact. 2017;277:146–158. doi:10.1016/j.cbi.2017.09.015
  • Liang F, Fang Y, Cao W, et al. Attenuation of tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in HepG2 cells by tangeretin: relevance of the Nrf2-ARE and MAPK signaling pathways. J Agric Food Chem. 2018;66(25):6317–6325. doi:10.1021/acs.jafc.8b01875
  • Chang SN, Kim SH, Dey DK, et al. 5-O-Demethylnobiletin alleviates CCl4-induced acute liver injury by equilibrating ROS-mediated apoptosis and autophagy induction. Int J Mol Sci. 2021;22(3):1083. doi:10.3390/ijms22031083