456
Views
7
CrossRef citations to date
0
Altmetric
Review

Acute Respiratory Distress Syndrome and COVID-19: A Literature Review

, , , , , ORCID Icon, , ORCID Icon, , & show all
Pages 7225-7242 | Published online: 21 Dec 2021

References

  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi:10.1001/jamainternmed.2020.0994
  • Schmidt M, Hajage D, Demoule A, et al. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47(1):60–73. doi:10.1007/s00134-020-06294-x
  • Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA. 2020;323(20):2052–2059. doi:10.1001/jama.2020.6775
  • Docherty AB, Harrison EM, Green CA, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985. doi:10.1136/bmj.m1985
  • Tzotzos SJ, Fischer B, Fischer H, Zeitlinger M. Incidence of ARDS and outcomes in hospitalized patients with COVID-19: a global literature survey. Crit Care. 2020;24(1):516. doi:10.1186/s13054-020-03240-7
  • Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818–824. doi:10.1164/ajrccm.149.3.7509706
  • Ferguson ND, Fan E, Camporota L, et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012;38(10):1573–1582. doi:10.1007/s00134-012-2682-1
  • Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med. 2016;193(1):52–59. doi:10.1164/rccm.201503-0584OC
  • Tan W, Zhao X, Ma X, et al. A novel coronavirus genome identified in a cluster of pneumonia cases - Wuhan, China 2019–2020. China CDC Weekly. 2020;2(4):61–62. doi:10.46234/ccdcw2020.017
  • Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–1581. doi:10.1001/jama.2020.5394
  • Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–687. doi:10.1038/s41591-020-0868-6
  • Xu W, Sun -N-N, Gao H-N, et al. Risk factors analysis of COVID-19 patients with ARDS and prediction based on machine learning. Sci Rep. 2021;11(1):2933. doi:10.1038/s41598-021-82492-x
  • Gattinoni L, Marini J, Pesenti A, Quintel M, Mancebo J, Brochard L. The ”baby lung” became an adult. Intensive Care Med. 2016;42(5):663–673. doi:10.1007/s00134-015-4200-8
  • Lascarrou J-B. COVID-19-related ARDS: one disease, two trajectories, and several unanswered questions. Lancet Respir Med. 2021. doi:10.1016/S2213-2600(21)00381-7
  • Tanner T, Offor OL, You JY, Hope AA, Gong MN, Chen J-T. Descriptive comparison between pre-COVID ARDS and COVID-19 related ARDS. TP48 TP048 COVID: ARDS CLINICAL STUDIES. American Thoracic Society. A2523; 2021.
  • Li L, Li R, Wu Z, et al. Therapeutic strategies for critically ill patients with COVID-19. Ann Intensive Care. 2020;10(1):45. doi:10.1186/s13613-020-00661-z
  • Li X, Ma X. Acute respiratory failure in COVID-19: is it ”typical” ARDS? Crit Care. 2020;24(1):198. doi:10.1186/s13054-020-02911-9
  • Van Haren F, Page C, Laffey J, et al. Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Critical Care. 2020;24:24. doi:10.1186/s13054-020-03148-2
  • Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med. 1998;158(1):3–11. doi:10.1164/ajrccm.158.1.9708031
  • Diamond M, Peniston Feliciano HL, Sanghavi D, Mahapatra S. Acute Respiratory Distress Syndrome. StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC; 2021.
  • Moss M, Guidot DM, Steinberg KP, et al. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit Care Med. 2000;28(7):2187–2192. doi:10.1097/00003246-200007000-00001
  • Moss M, Bucher B, Moore FA, Moore EE, Parsons PE. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA. 1996;275(1):50–54. doi:10.1001/jama.1996.03530250054027
  • Liu C, Li J. Role of genetic factors in the development of acute respiratory distress syndrome. J Transl Int Med. 2015;2(3):107–110. doi:10.4103/2224-4018.141831
  • Meyer NJ, Christie JD. Genetic heterogeneity and risk of acute respiratory distress syndrome. Semin Respir Crit Care Med. 2013;34(4):459–474. doi:10.1055/s-0033-1351121
  • Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11(8):875–879. doi:10.1038/nm1267
  • Hussain M, Jabeen Q, Ahmad F, et al. COVID-19 and inhibitors of the renin–angiotensin–aldosterone system. Expert Rev Anti Infect Ther. 2021;19(7):815–816. doi:10.1080/14787210.2021.1851197
  • Zhu R-F, Gao Y-L, Robert S-H, Gao J-P, Yang S-G, Zhu C-T. Systematic review of the registered clinical trials for coronavirus disease 2019 (COVID-19). J Transl Med. 2020;18(1):274. doi:10.1186/s12967-020-02442-5
  • Pfortmueller CA, Spinetti T, Urman RD, Luedi MM, Schefold JC. COVID-19-associated acute respiratory distress syndrome (CARDS): current knowledge on pathophysiology and ICU treatment – a narrative review. Best Pract Res Clin Anaesthesiol. 2021;35(3):351–368. doi:10.1016/j.bpa.2020.12.011
  • Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med. 2017;377(6):562–572. doi:10.1056/NEJMra1608077
  • Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol. 2011;6:147–163. doi:10.1146/annurev-pathol-011110-130158
  • Ware LB. Pathophysiology of acute lung injury and the acute respiratory distress syndrome. Semin Respir Crit Care Med. 2006;27(4):337–349. doi:10.1055/s-2006-948288
  • Greene KE, Wright JR, Steinberg KP, et al. Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. Am J Respir Crit Care Med. 1999;160(6):1843–1850. doi:10.1164/ajrccm.160.6.9901117
  • Fremont RD, Koyama T, Calfee CS, et al. Acute lung injury in patients with traumatic injuries: utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma. 2010;68(5):1121–1127. doi:10.1097/TA.0b013e3181c40728
  • Ware LB, Koyama T, Billheimer DD, et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest. 2010;137(2):288–296. doi:10.1378/chest.09-1484
  • Terpstra ML, Aman J, van Nieuw Amerongen GP, Groeneveld AB. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis*. Crit Care Med. 2014;42(3):691–700. doi:10.1097/01.ccm.0000435669.60811.24
  • Binnie A, Tsang JL, Dos Santos CC. Biomarkers in acute respiratory distress syndrome. Curr Opin Crit Care. 2014;20(1):47–55. doi:10.1097/mcc.0000000000000048
  • Sweeney TE, Khatri P. Generalizable biomarkers in critical care: toward precision medicine. Crit Care Med. 2017;45(6):934–939. doi:10.1097/ccm.0000000000002402
  • Albertine KH, Soulier MF, Wang Z, et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol. 2002;161(5):1783–1796. doi:10.1016/s0002-9440(10)64455-0
  • Bos LD, Weda H, Wang Y, et al. Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur Respir J. 2014;44(1):188–197. doi:10.1183/09031936.00005614
  • Raghavendran K, Pryhuber GS, Chess PR, Davidson BA, Knight PR, Notter RH. Pharmacotherapy of acute lung injury and acute respiratory distress syndrome. Curr Med Chem. 2008;15(19):1911–1924. doi:10.2174/092986708785132942
  • Weigelt JA, Norcross JF, Borman KR, Snyder WH 3rd. Early steroid therapy for respiratory failure. Arch Surg. 1985;120(5):536–540. doi:10.1001/archsurg.1985.01390290018003
  • Bernard GR, Luce JM, Sprung CL, et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 1987;317(25):1565–1570. doi:10.1056/NEJM198712173172504
  • Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis. 1988;138(1):62–68. doi:10.1164/ajrccm/138.1.62
  • Kido T, Muramatsu K, Asakawa T, et al. The relationship between high-dose corticosteroid treatment and mortality in acute respiratory distress syndrome: a retrospective and observational study using a nationwide administrative database in Japan. BMC Pulm Med. 2018;18(1):28. doi:10.1186/s12890-018-0597-5
  • Annane D, Sébille V, Bellissant E. Effect of low doses of corticosteroids in septic shock patients with or without early acute respiratory distress syndrome. Crit Care Med. 2006;34(1):22–30. doi:10.1097/01.ccm.0000194723.78632.62
  • Liu L, Li J, Huang YZ, et al. [The effect of stress dose glucocorticoid on patients with acute respiratory distress syndrome combined with critical illness-related corticosteroid insufficiency]. Zhonghua Nei Ke Za Zhi. 2012;51(8):599–603. Chinese.
  • Hirano Y, Madokoro S, Kondo Y, Okamoto K, Tanaka H. Corticosteroid treatment for early acute respiratory distress syndrome: a systematic review and meta-analysis of randomized trials. J Intensive Care. 2020;8(1):91. doi:10.1186/s40560-020-00510-y
  • Tongyoo S, Permpikul C, Mongkolpun W, et al. Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: results of a randomized controlled trial. Crit Care. 2016;20(1):329. doi:10.1186/s13054-016-1511-2
  • Meduri GU, Golden E, Freire AX, et al. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest. 2007;131(4):954–963. doi:10.1378/chest.06-2100
  • Villar J, Ferrando C, Martínez D, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–276. doi:10.1016/s2213-2600(19)30417-5
  • Festic E, Carr GE, Cartin-Ceba R, et al. Randomized Clinical Trial of a Combination of an Inhaled Corticosteroid and Beta Agonist in Patients at Risk of Developing the Acute Respiratory Distress Syndrome*. Crit Care Med. 2017;45(5):798–805. doi:10.1097/ccm.0000000000002284
  • Hasan SS, Capstick T, Ahmed R, et al. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: a systematic review and meta-analysis. Expert Rev Respir Med. 2020;14(11):1149–1163. doi:10.1080/17476348.2020.1804365
  • Noreen S, Maqbool I, Madni A. Dexamethasone: therapeutic potential, risks, and future projection during COVID-19 pandemic. Eur J Pharmacol. 2021;894:173854. doi:10.1016/j.ejphar.2021.173854
  • Wu C, Hou D, Du C, et al. Corticosteroid therapy for coronavirus disease 2019-related acute respiratory distress syndrome: a cohort study with propensity score analysis. Crit Care. 2020;24(1):643. doi:10.1186/s13054-020-03340-4
  • Meduri G, Chinn A, Leeper K, et al. Corticosteroid rescue treatment of progressive fibroproliferation in late ARDS. Chest. 1994;105:1516–1527. doi:10.1378/chest.105.5.1516
  • Steinberg KP, Hudson LD, Goodman RB, et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354(16):1671–1684. doi:10.1056/NEJMoa051693
  • Pulakurthi YS, Pederson JM, Saravu K, et al. Corticosteroid therapy for COVID-19: a systematic review and meta-analysis of randomized controlled trials. Medicine. 2021;100(20):e25719. doi:10.1097/md.0000000000025719
  • Ma S, Xu C, Liu S, et al. Efficacy and safety of systematic corticosteroids among severe COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. Signal Transduction Targeted Therapy. 2021;6(1):83. doi:10.1038/s41392-021-00521-7
  • Lee KCH, Sewa DW, Phua GC. Potential role of statins in COVID-19. Int J Infect Dis. 2020;96:615–617. doi:10.1016/j.ijid.2020.05.115
  • Jacobson JR, Barnard JW, Grigoryev DN, Ma SF, Tuder RM, Garcia JG. Simvastatin attenuates vascular leak and inflammation in murine inflammatory lung injury. Am J Physiol Lung Cell Mol Physiol. 2005;288(6):L1026–32. doi:10.1152/ajplung.00354.2004
  • Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005;4(12):977–987. doi:10.1038/nrd1901
  • O’Neal HRJ, Koyama T, Koehler EAS, et al. Prehospital statin and aspirin use and the prevalence of severe sepsis and acute lung injury/acute respiratory distress syndrome*. Crit Care Med. 2011;39(6):1343–1350. doi:10.1097/CCM.0b013e3182120992
  • Shyamsundar M, McKeown STW, O’Kane CM, et al. Simvastatin Decreases Lipopolysaccharide-induced Pulmonary Inflammation in Healthy Volunteers. Am J Respir Crit Care Med. 2009;179(12):1107–1114. doi:10.1164/rccm.200810-1584OC
  • Mansur A, Steinau M, Popov AF, et al. Impact of statin therapy on mortality in patients with sepsis-associated acute respiratory distress syndrome (ARDS) depends on ARDS severity: a prospective observational cohort study. BMC Med. 2015;13(1):128. doi:10.1186/s12916-015-0368-6
  • Kruger P, Bailey M, Bellomo R, et al. A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am J Respir Crit Care Med. 2013;187(7):743–750. doi:10.1164/rccm.201209-1718OC
  • Craig TR, Duffy MJ, Shyamsundar M, et al. A Randomized Clinical Trial of Hydroxymethylglutaryl– coenzyme A Reductase Inhibition for Acute Lung Injury (The HARP Study). Am J Respir Crit Care Med. 2011;183(5):620–626. doi:10.1164/rccm.201003-0423OC
  • Zhang X, Zhu Z, Jiao W, Liu W, Liu F, Zhu X. Ulinastatin treatment for acute respiratory distress syndrome in China: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2019;19(1):196. doi:10.1186/s12890-019-0968-6
  • Leng YX, Yang SG, Song YH, Zhu X, Yao GQ. Ulinastatin for acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. World J Crit Care Med. 2014;3(1):34–41. doi:10.5492/wjccm.v3.i1.34
  • Gao X-Q, Li Y-F, Jiang Z-L. Impact of statins on ALI/ARDS: a meta-analysis. Pulm Pharmacol Ther. 2016;39:85–91. doi:10.1016/j.pupt.2016.06.010
  • Xiong B, Wang C, Tan J, et al. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: a systematic review and meta-analysis. Respirology. 2016;21(6):1026–1033. doi:10.1111/resp.12820
  • Truwit JD, Bernard GR, Steingrub J, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med. 2014;370(23):2191–2200. doi:10.1056/NEJMoa1401520
  • McAuley DF, Laffey JG, O’Kane CM, et al. Simvastatin in the Acute Respiratory Distress Syndrome. N Eng J Med. 2014;371(18):1695–1703. doi:10.1056/NEJMoa1403285
  • Castiglione V, Chiriacò M, Emdin M, Taddei S, Vergaro G. Statin therapy in COVID-19 infection. Eur Heart J. 2020;6(4):258–259. doi:10.1093/ehjcvp/pvaa042
  • Masana L, Correig E, Rodríguez-Borjabad C, et al. EFFECT oF STATIN THERAPY oN SARS-CoV-2 INFECTION-RELATED. Eur Heart J Cardiovasc Pharmacother. 2020. doi:10.1093/ehjcvp/pvaa128
  • Permana H, Huang I, Purwiga A, et al. In-hospital use of statins is associated with a reduced risk of mortality in coronavirus-2019 (COVID-19): systematic review and meta-analysis. Pharmacol Rep. 2021;73(3):769–780. doi:10.1007/s43440-021-00233-3
  • Hariyanto TI, Kurniawan A. Statin and outcomes of coronavirus disease 2019 (COVID-19): a systematic review, meta-analysis, and meta-regression. Nutrition, Metab Cardiovas Dis. 2021;31(6):1662–1670. doi:10.1016/j.numecd.2021.02.020
  • Aziz M, Fatima R, Assaly R. Elevated interleukin-6 and severe COVID-19: a meta-analysis. J Med Virol. 2020;92(11):2283–2285. doi:10.1002/jmv.25948
  • Maes B, Bosteels C, De Leeuw E, et al. Treatment of severely ill COVID-19 patients with anti-interleukin drugs (COV-AID): a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):468. doi:10.1186/s13063-020-04453-5
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi:10.1016/s0140-6736(20)30628-0
  • Stone JH, Frigault MJ, Serling-Boyd NJ, et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Eng J Med. 2020;383(24):2333–2344. doi:10.1056/NEJMoa2028836
  • Hermine O, Mariette X, Tharaux P-L, et al. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: a Randomized Clinical Trial. JAMA Intern Med. 2021;181(1):32–40. doi:10.1001/jamainternmed.2020.6820
  • Ivan Hariyanto T, Kurniawan A. Tocilizumab administration is associated with the reduction in biomarkers of coronavirus disease 2019 infection. J Med Virol. 2021;93(3):1832–1836. doi:10.1002/jmv.26698
  • Panacek EA, Marshall JC, Albertson TE, et al. Efficacy and safety of the monoclonal anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe sepsis and elevated interleukin-6 levels. Crit Care Med. 2004;32(11):2173–2182. doi:10.1097/01.ccm.0000145229.59014.6c
  • Yanik GA, Grupp SA, Pulsipher MA, et al. TNF-receptor inhibitor therapy for the treatment of children with idiopathic pneumonia syndrome. A joint Pediatric Blood and Marrow Transplant Consortium and Children’s Oncology Group Study (ASCT0521). Biol Blood Marrow Transplant. 2015;21(1):67–73. doi:10.1016/j.bbmt.2014.09.019
  • Yanik GA, Ho VT, Levine JE, et al. The impact of soluble tumor necrosis factor receptor etanercept on the treatment of idiopathic pneumonia syndrome after allogeneic hematopoietic stem cell transplantation. Blood. 2008;112(8):3073–3081. doi:10.1182/blood-2008-03-143412
  • Stallmach A, Kortgen A, Gonnert F, Coldewey SM, Reuken P, Bauer M. Infliximab against severe COVID-19-induced cytokine storm syndrome with organ failure—a cautionary case series. Critical Care. 2020;24(1):444. doi:10.1186/s13054-020-03158-0
  • Correger E, Marcos J, Laguens G, Stringa P, Cardinal-Fernández P, Blanch L. Tratamento prévio com adalimumabe reduz lesão pulmonar induzida por ventilação mecânica em um modelo experimental. Revista Brasileira de Terapia Intensiva. 2020;32:58–65. doi:10.5935/0103-507x.20200010
  • Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19(2):1520–1529. doi:10.1164/rccm.201310-1892OC
  • Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Eng J Med. 2020;384(9):795–807. doi:10.1056/NEJMoa2031994
  • Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled Phase 3 trial. Lancet Respir Med. 2021. doi:10.1016/S2213-2600(21)00331-3
  • Proudfoot AG, O’Kane CM, Bayliffe A, et al. A Novel TNFR1-Targeting Domain Antibody Attenuates Pulmonary Inflammation In A Human Model Of Lung Injury, Via Actions On The Lung Micro-Vascular Endothelium. A47 CRITICAL ILLNESS: NOVEL MOLECULES and MODELS. American Thoracic Society. A6589; 2014.
  • Watanabe M, Boyer JL, Crystal RG. Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema. Hum Gene Ther. 2009;20(6):598–610. doi:10.1089/hum.2008.169
  • Gainnier M, Roch A, Forel JM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113–119. doi:10.1097/01.Ccm.0000104114.72614.Bc
  • Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749–2757. doi:10.1097/01.Ccm.0000239435.87433.0d
  • Papazian L, Forel J-M, Gacouin A, et al. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. N Eng J Med. 2010;363(12):1107–1116. doi:10.1056/NEJMoa1005372
  • Alhazzani W, Alshahrani M, Jaeschke R, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Critical Care. 2013;17(2):R43. doi:10.1186/cc12557
  • Courcelle R, Gaudry S, Serck N, Blonz G, Lascarrou JB, Grimaldi D. Neuromuscular blocking agents (NMBA) for COVID-19 acute respiratory distress syndrome: a multicenter observational study. Critical Care. 2020;24:24. doi:10.1186/s13054-020-03164-2
  • Fukimbara S, Niibe K, Yamamoto M, Yamaguchi T. Adjustment for propensity score in nonrandomized clinical studies: comparison of sivelestat versus conventional therapy for acute respiratory distress syndrome. Therapeutic Innovatio Regulatory Sci. 2017;5(1):89–99. doi:10.1177/2168479016659103
  • Endo S, Sato N, Yaegashi Y, et al. Sivelestat sodium hydrate improves septic acute lung injury by reducing alveolar dysfunction. Res Commun Mol Pathol Pharmacol. 2006;119(1–6):53–65.
  • Sahchbnasagh A, Saghafi F, Safdari M, et al. Neutrophil Elastase Inhibitor (Sivelestat), may be a Promising Therapeutic Option for Management of Acute Lung Injury/Acute Respiratory Distress Syndrome or Disseminated Intravascular Coagulation in COVID-19. Authorea. 2020;4:548.
  • Stockley R, DeSoyza A, Gunawardena K, et al. Phase 2 study of a neutrophil elastase inhibitor (AZD9668} in patients with bronchiectasis. Respir Med. 2013;107(4):524–533. doi:10.1016/j.rmed.2012.12.009
  • Edwards A, Taggart C, Elborn J, Calfee CS, Matthay MA, O’Kane C. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. Am J Respir Crit Care Med. 2014;189(12):1520–1529. doi:10.1164/rccm.201310-1892OC
  • Dixon B, Schultz MJ, Smith R, Fink JB, Santamria JD, Campbell DJ. Nebulized heparin is associated with fewer days of mechanical ventilation in critically ill patients: a randomized controlled trial. Critical Care. 2010;14(5):180. doi:10.1186/cc9286
  • Chen W, Janz DR, Bastarache JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med. 2015;43(4):801–807. doi:10.1097/CCM.0000000000000789
  • Kor DJ, Carter RE, Park PK, et al. Lung injury prevention with aspirin on Development of ARDS in At-Risk Patients Presenting to the Emergency Department: the LIPS-A Randomized Clinical Trial. JAMA. 2016;315(22):2406. doi:10.1001/jama.2016.6330
  • Liu KD, Levitt J, Zhuo H, et al. Randomized clinical trial of activated protein C for the treatment of acute lung injury. Am J Respir Crit Care Med. 2008;178(6):618–623. doi:10.1164/rccm.200803-419OC
  • Shyamsundar M, McAuley DF, Ingram RJ, et al. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. Am j Respir Critical Care Med. 2014;189(12):1520–1529.
  • McAuley DF, Cross LM, Hamid U, et al. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomized, double-blind, placebo-controlled phase 2 trial. Lancet Respir Med. 2017;5(6):484–491. doi:10.1016/S2213-2600(17)30171-6
  • Paine R, Standiford TJ, Dechert RE. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med. 2012;40(1):90–97. doi:10.1097/CCM.0b013e31822d7bf0
  • Fowler AA, Truwit JD, Hite RD. Effect of vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: the CITRIS-ALI Randomized Clinical Trial. JAMA. 2019;322(13):1261–1270. doi:10.1001/jama.2019.11825
  • Grant WB. Vitamin D supplementation of mother and infant could reduce risk of sepsis in premature infants. Early Hum Dev. 2010;86(2):133. doi:10.1016/j.earlhumdev.2010.02.003
  • Hariyanto TI, Intan D, Hananto JE, Harapan H, Kurniawan A. Vitamin D supplementation and Covid-19 outcomes: a systematic review, meta-analysis and meta-regression. Rev Med Virol. 2015:1;e2269. doi:10.1002/rmv.2269
  • Suter PM, Domenighetti G, Schaller MD, Laverriere MC, Ritz R, Perret C. N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest. 1994;105(1):190–194. doi:10.1378/chest.105.1.190
  • Paterson RL, Galley HF, Webster NR. The effect of N-acetylcysteine on nuclear factor-kappa B activation, interleukin-6, interleukin-8, and intercellular adhesion molecule-1 expression in patients with sepsis. Crit Care Med. 2003;31(11):2574–2578. doi:10.1097/01.Ccm.0000089945.69588.18
  • Hariyanto TI, Lugito NPH, Yanto TA, Siregar JI, Kurniawan A. Insulin therapy and outcome from coronavirus disease 2019 (COVID-19): a Systematic Review, Meta-Analysis, and Meta-Regression. Endocr Metab Immune Disord Drug Targets. 2021;5:55. doi:10.2174/1871530321666210709164925
  • Yang Y, Cai Z, Zhang J. Insulin Treatment May Increase Adverse Outcomes in Patients With COVID-19 and Diabetes: a Systematic Review and Meta-Analysis. Original Research. Front Endocrinol (Lausanne). 2021;12:894. doi:10.3389/fendo.2021.696087
  • Hariyanto TI, Halim DA, Rosalind J, Gunawan C, Kurniawan A. Ivermectin and outcomes from Covid-19 pneumonia: a systematic review and meta-analysis of randomized clinical trial studies. Rev Med Virol. 2015:1;e2265. doi:10.1002/rmv.2265
  • Hariyanto TI, Halim DA, Jodhinata C, Yanto TA, Kurniawan A. Colchicine treatment can improve outcomes of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. Clin Exp Pharmacol Physiol. 2021;48(6):823–830. doi:10.1111/1440-1681.13488
  • Drago BB, Kimura D, Rovnaghi CR, et al. Double-blind, placebo-controlled pilot randomized trial of methylprednisolone infusion in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2015;16(3):e74–81. doi:10.1097/PCC.0000000000000349
  • Proudfoot A, Bayliffe A, O’Kane CM, et al. Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax. 2018;73(8):723–730. doi:10.1136/thoraxjnl-2017-210305
  • Vincent JL, Artigas A, Petersen LC, Meyer C. A multicenter, randomized, double-blind, placebo-controlled, dose-escalation trial assessing safety and efficacy of active site inactivated recombinant factor VIIa in subjects with acute lung injury or acute respiratory distress syndrome. Crit Care Med. 2009;37(6):1874–1880. doi:10.1097/CCM.0b013e31819fff2c
  • Cornet AD, Groeneveld ABJ, Hofstra JJ, et al. Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: a randomized clinical trial. PLoS One. 2014;9(3):e90983–e90983. doi:10.1371/journal.pone.0090983
  • Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019;380(21):1997–2008. doi:10.1056/NEJMoa1901686
  • Aikawa N, Ishizaka A, Hirasawa H, et al. Reevaluation of the efficacy and safety of the neutrophil elastase inhibitor, Sivelestat, for the treatment of acute lung injury associated with systemic inflammatory response syndrome; a phase IV study. Pulm Pharmacol Ther. 2011;24(5):549–554. doi:10.1016/j.pupt.2011.03.001
  • Kido T, Muramatsu K, Yatera K, et al. Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome. Respirology. 2017;22(4):708–713. doi:10.1111/resp.12969
  • Fukimbara S, Niibe K, Yamamoto M, Yamaguchi T. Adjustment for propensity score in nonrandomized clinical studies: comparison of sivelestat versus conventional therapy for acute lung injury in acute respiratory distress syndrome. Ther Innov Regul Sci. 2017;51(1):89–99. doi:10.1177/2168479016659103
  • Bernard GR, Wheeler AP, Arons MM, et al. A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The Antioxidant in ARDS Study Group. Chest. 1997;112(1):164–172. doi:10.1378/chest.112.1.164
  • Domenighetti G, Suter PM, Schaller MD, Ritz R, Perret C. Treatment with N-acetylcysteine during acute respiratory distress syndrome: a randomized, double-blind, placebo-controlled clinical study. J Crit Care. 1997;12(4):177–182. doi:10.1016/s0883-9441(97)90029-0
  • Morris PE, Papadakos P, Russell JA, et al. A double-blind placebo-controlled study to evaluate the safety and efficacy of L-2-oxothiazolidine-4-carboxylic acid in the treatment of patients with acute respiratory distress syndrome. Crit Care Med. 2008;36(3):782–788. doi:10.1097/ccm.0b013e318164e7e4
  • Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the citris-ali randomized clinical trial. JAMA. 2019;322(13):1261–1270. doi:10.1001/jama.2019.11825
  • ARDS Network Authors For The ARDS Network T. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. The ARDS Network. JAMA. 2000;283(15):1995–2002. doi:10.1001/jama.283.15.1995
  • McAuley DF, Cross LM, Hamid U, et al. Keratinocyte growth factor for the treatment of the acute respiratory distress syndrome (KARE): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Respir Med. 2017;5(6):484–491. doi:10.1016/s2213-2600(17)30171-6
  • Paine R 3rd, Standiford TJ, Dechert RE, et al. A randomized trial of recombinant human granulocyte-macrophage colony stimulating factor for patients with acute lung injury. Crit Care Med. 2012;40(1):90–97. doi:10.1097/CCM.0b013e31822d7bf0
  • Anzueto A, Baughman RP, Guntupalli KK, et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. N Eng J Med. 1996;334(22):1417–1422. doi:10.1056/NEJM199605303342201
  • Spragg RG, Lewis JF, Walmrath HD, et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med. 2004;351(9):884–892. doi:10.1056/NEJMoa033181
  • Abraham E, Baughman R, Fletcher E, et al. Liposomal prostaglandin E1 (TLC C-53) in acute respiratory distress syndrome: a controlled, randomized, double-blind, multicenter clinical trial. TLC C-53 ARDS Study Group. Crit Care Med. 1999;27(8):1478–1485. doi:10.1097/00003246-199908000-00013
  • Network ACT. Randomized, placebo-controlled trial of lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit Care Med. 2002;30(1):1–6. doi:10.1097/00003246-200201000-00001.
  • Gao Smith F, Perkins GD, Gates S, et al. Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial. Lancet. 2012;379(9812):229–235. doi:10.1016/S0140-6736(11)61623-1
  • Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011;306(14):1574–1581. doi:10.1001/jama.2011.1435
  • Willson DF, Truwit JD, Conaway MR, Traul CS, Egan EE. The adult calfactant in acute respiratory distress syndrome trial. Chest. 2015;148(2):356–364. doi:10.1378/chest.14-1139
  • Limaye AP, Stapleton RD, Peng L, et al. Effect of ganciclovir on IL-6 levels among Cytomegalovirus-seropositive adults with critical illness: a randomized clinical trial. JAMA. 2017;318(8):731–740. doi:10.1001/jama.2017.10569