63
Views
3
CrossRef citations to date
0
Altmetric
Review

Long Non-Coding RNAs in Oral Submucous Fibrosis: Their Functional Mechanisms and Recent Research Progress

, , , , , , , & ORCID Icon show all
Pages 5787-5800 | Published online: 03 Nov 2021

References

  • Li J, Yao M, Zhu X, et al. YAP-Induced Endothelial-Mesenchymal transition in oral submucous fibrosis. J Dent Res. 2019;98(8):920–929. doi:10.1177/0022034519851804
  • Tom A, Baghirath V, Krishna B, et al. Ultrastructural changes of collagen in different histopathological grades of oral submucous fibrosis. J Pharm Bioallied Sci. 2019;11(Suppl 2):S309–S313. doi:10.4103/JPBS.JPBS_20_19
  • Wang YY, Tail YH, Wang WC, et al. Malignant transformation in 5071 southern Taiwanese patients with potentially malignant oral mucosal disorders. Bmc Oral Health. 2014;14:99. doi:10.1186/1472-6831-14-99
  • Ray JG, Chatterjee R, Chaudhuri K. Oral submucous fibrosis: a global challenge. Rising incidence, risk factors, management, and research priorities. Periodontol. 2019;80(1):200–212. doi:10.1111/prd.12277
  • Tilakaratne WM, Klinikowski MF, Saku T, Peters TJ, Warnakulasuriya S. Oral submucous fibrosis: review on aetiology and pathogenesis. Oral Oncol. 2006;42(6):561–568. doi:10.1016/j.oraloncology.2005.08.005
  • Angadi PV, Rekha KP. Oral submucous fibrosis: a clinicopathologic review of 205 cases in Indians. Oral Maxillofac Surg. 2011;15(1):15–19. doi:10.1007/s10006-010-0225-x
  • Jain A, Taneja S. Oral submucous fibrosis in pediatric patients: a systematic review and protocol for management. Int J Surg Oncol. 2019;2019:3497136.
  • Deshpande A, Kiran S, Dhillon S, Mallikarjuna R. Oral submucous fibrosis: a premalignant condition in a 14-year-old Indian girl. BMJ Case Rep. 2013;2013:2548.
  • Shen YW, Shih YH, Fuh LJ, Shieh TM. Oral submucous fibrosis: a review on biomarkers, pathogenic mechanisms, and treatments. Int J Mol Sci. 2020;21:19. doi:10.3390/ijms21197231
  • Arakeri G, Rai KK, Hunasgi S, et al. Oral submucous fibrosis: an update on current theories of pathogenesis. J Oral Pathol Med. 2017;46(6):406–412. doi:10.1111/jop.12581
  • Angadi PV, Rao SS. Areca nut in pathogenesis of oral submucous fibrosis: revisited. Oral Maxillofac Surg. 2011;15(1):1–9. doi:10.1007/s10006-010-0219-8
  • Arakeri G, Brennan PA. Oral submucous fibrosis: an overview of the aetiology, pathogenesis, classification, and principles of management. Br J Oral Maxillofac Surg. 2013;51(7):587–593. doi:10.1016/j.bjoms.2012.08.014
  • Bishen KA, Radhakrishnan R, Satyamoorthy K. The role of basic fibroblast growth factor in oral submucous fibrosis pathogenesis. J Oral Pathol Med. 2008;37(7):402–411. doi:10.1111/j.1600-0714.2008.00649.x
  • Haque MF, Harris M, Meghji S, Barrett AW. Immunolocalization of cytokines and growth factors in oral submucous fibrosis. Cytokine. 1998;10(9):713–719. doi:10.1006/cyto.1997.0342
  • Rajendran R, Rajeesh MP, Shaikh S, Shanthi MR. Expression of matrix metalloproteinases (MMP-1, MMP-2 and MMP-9) and their inhibitors (TIMP-1 and TIMP-2) in oral submucous fibrosis. Indian J Dent Res. 2006;17(4):161–166. doi:10.4103/0970-9290.29870
  • Shieh DH, Chiang LC, Shieh TY. Augmented mRNA expression of tissue inhibitor of metalloproteinase-1 in buccal mucosal fibroblasts by arecoline and safrole as a possible pathogenesis for oral submucous fibrosis. Oral Oncol. 2003;39(7):728–735. doi:10.1016/S1368-8375(03)00101-5
  • Jani YV, Chaudhary AR, Dudhia BB, et al. Evaluation of role of trace elements in oral submucous fibrosis patients: a study on Gujarati population. J Oral Maxillofac Pathol. 2017;21(3):455. doi:10.4103/jomfp.JOMFP_106_14
  • Alexander AJ, Ramani P, Sherlin HJ, Gheena S. Quantitative analysis of copper levels in areca nut plantation area - a role in increasing prevalence of oral submucous fibrosis: an in vitro study. Indian J Dent Res. 2019;30(2):261–266. doi:10.4103/ijdr.IJDR_431_17
  • Trivedy C, Meghji S, Warnakulasuriya KA, Johnson NW, Harris M. Copper stimulates human oral fibroblasts in vitro: a role in the pathogenesis of oral submucous fibrosis. J Oral Pathol Med. 2001;30(8):465–470. doi:10.1034/j.1600-0714.2001.030008465.x
  • Rajendran R, Vijayakumar T, Vasudevan DM. An alternative pathogenetic pathway for oral submucous fibrosis (OSMF). Med Hypotheses. 1989;30(1):35–37. doi:10.1016/0306-9877(89)90122-9
  • Goel S, Ahmed J. A comparative study on efficacy of different treatment modalities of oral submucous fibrosis evaluated by clinical staging in population of Southern Rajasthan. J Cancer Res Ther. 2015;11(1):113–118. doi:10.4103/0973-1482.139263
  • Rajalalitha P, Vali S. Molecular pathogenesis of oral submucous fibrosis–a collagen metabolic disorder. J Oral Pathol Med. 2005;34(6):321–328. doi:10.1111/j.1600-0714.2005.00325.x
  • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157(1):77–94.
  • Heo MJ, Yun J, Kim SG. Role of non-coding RNAs in liver disease progression to hepatocellular carcinoma. Arch Pharm Res. 2019;42(1):48–62. doi:10.1007/s12272-018-01104-x
  • Van der Hauwaert C, Glowacki F, Pottier N, Cauffiez C. Non-Coding RNAs as new therapeutic targets in the context of renal fibrosis. Int J Mol Sci. 2019;20:8. doi:10.3390/ijms20081977
  • Zheng L, Jian X, Guo F, et al. MiR-203 inhibits arecoline-induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis. Oncol Rep. 2015;33(6):2753–2760. doi:10.3892/or.2015.3909
  • Lu MY, Yu CC, Chen PY, et al. MiR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J Formos Med Assoc. 2018;117(9):791–797. doi:10.1016/j.jfma.2018.05.016
  • Liao YW, Yu CC, Hsieh PL, Chang YC. MiR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2. J Cell Mol Med. 2018;22(9):4130–4138. doi:10.1111/jcmm.13690
  • Kazimierczyk M, Wrzesinski J. Long Non-Coding RNA epigenetics. Int J Mol Sci. 2021;22(11):6166. doi:10.3390/ijms22116166
  • Wang W, Min L, Qiu X, et al. Biological function of long non-coding RNA (LncRNA) xist. Front Cell Dev Biol. 2021;9:645647.
  • Yu CC, Liao YW, Hsieh PL, Chang YC. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis. Int J Mol Sci. 2021;22(4):124.
  • Lee YH, Yu CC, Hsieh PL, et al. Inhibition of lncRNA HOTTIP ameliorated myofibroblast activities and inflammatory cytokines in oral submucous fibrosis. J Formos Med Assoc. 2021;120(5):1188–1193. doi:10.1016/j.jfma.2020.11.013
  • Lin CY, Liao YW, Hsieh PL, et al. LncRNA GAS5-AS1 inhibits myofibroblasts activities in oral submucous fibrosis. J Formos Med Assoc. 2018;117(8):727–733. doi:10.1016/j.jfma.2017.09.012
  • Lee YH, Liao YW, Lu MY, Hsieh PL, Yu CC. LINC00084/miR-204/ZEB1 axis mediates myofibroblastic differentiation activity in fibrotic buccal mucosa fibroblasts: therapeutic target for oral submucous fibrosis. J Pers Med. 2021;11(8):707. doi:10.3390/jpm11080707
  • Miao H, Wu XQ, Zhang DD, et al. Deciphering the cellular mechanisms underlying fibrosis-associated diseases and therapeutic avenues. Pharmacol Res. 2021;163:105316. doi:10.1016/j.phrs.2020.105316
  • Lei CS, Kung HJ, Shih JW. Long Non-Coding RNAs as functional codes for oral cancer: translational potential, progress and promises. Int J Mol Sci. 2021;22(9):4903. doi:10.3390/ijms22094903
  • Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell. 2018;172(3):393–407. doi:10.1016/j.cell.2018.01.011
  • He W, Zhong G, Jiang N, et al. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest. 2018;128(2):861–875. doi:10.1172/JCI96218
  • de Klerk E, Hp T. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 2015;31(3):128–139. doi:10.1016/j.tig.2015.01.001
  • Yang Y, Wen L, Zhu H. Unveiling the hidden function of long non-coding RNA by identifying its major partner-protein. Cell Biosci. 2015;5:59. doi:10.1186/s13578-015-0050-x
  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–166. doi:10.1146/annurev-biochem-051410-092902
  • Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res. 2018;3(3):108–117. doi:10.1016/j.ncrna.2018.03.001
  • Rosa S, Duncan S, Dean C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression. Nat Commun. 2016;7:13031. doi:10.1038/ncomms13031
  • Csorba T, Questa JI, Sun Q, Dean C. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci U S A. 2014;111(45):16160–16165. doi:10.1073/pnas.1419030111
  • Gao N, Li Y, Li J, et al. Long Non-Coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 2020;10:598817. doi:10.3389/fonc.2020.598817
  • Cheng S, Xia B, Li H, et al. Long non-coding RNA SATB2-AS1 inhibits microRNA-155-3p to suppress breast cancer cell growth by promoting breast cancer metastasis suppressor 1-like. Cancer Cell Int. 2020;20(1):321. doi:10.1186/s12935-020-01411-8
  • Wu R, Su Y, Wu H, et al. Characters, functions and clinical perspectives of long non-coding RNAs. Mol Genet Genomics. 2016;291(3):1013–1033. doi:10.1007/s00438-016-1179-y
  • Puvvula PK, Desetty RD, Pineau P, et al. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun. 2014;5:5323. doi:10.1038/ncomms6323
  • Gil N, Ulitsky I. Production of spliced long noncoding RNAs specifies regions with increased enhancer activity. Cell Syst. 2018;7(5):537–547.
  • Tan JY, Biasini A, Young RS, Marques AC. Splicing of enhancer-associated lincRNAs contributes to enhancer activity. Life Sci Alliance. 2020;3(4):1–8.
  • Neppl RL, Wu CL, Walsh K. LncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. J Cell Biol. 2017;216(11):3497–3507. doi:10.1083/jcb.201612100
  • Wang Z, Yang B, Zhang M, et al. LncRNA epigenetic landscape analysis identifies EPIC1 as an oncogenic lncRNA that interacts with MYC and promotes Cell-Cycle progression in cancer. Cancer Cell. 2018;33(4):706–720.
  • Briggs JA, Wolvetang EJ, Mattick JS, Rinn JL, Barry G. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015;88(5):861–877. doi:10.1016/j.neuron.2015.09.045
  • Fang CY, Yu CC, Liao YW, et al. LncRNA LINC00974 activates TGF-beta/Smad signaling to promote oral fibrogenesis. J Oral Pathol Med. 2019;48(2):151–158.
  • Wang YK, Liu CM, Lin T, et al. Inhibition of HIF1A-AS1 impedes the arecoline-induced migration activity of human oral mucosal fibroblasts. J Formos Med Assoc. 2020;119(4):879–883. doi:10.1016/j.jfma.2019.12.014
  • Yu CH, Fang CY, Yu CC, et al. LINC00312/YBX1 axis regulates myofibroblast activities in oral submucous fibrosis. Int J Mol Sci. 2020;21(8):2979.
  • Zhou S, Zhu Y, Li Z, et al. Exosome-derived long non-coding RNA ADAMTS9-AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway. J Cell Mol Med. 2021;25(4):2262–2273. doi:10.1111/jcmm.16219
  • Leibovitch MP, Nguyen VC, Gross MS, et al. The human ASM (adult skeletal muscle) gene: expression and chromosomal assignment to 11p15. Biochem Biophys Res Commun. 1991;180(3):1241–1250. doi:10.1016/S0006-291X(05)81329-4
  • Poirier F, Chan CT, Timmons PM, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development. 1991;113(4):1105–1114. doi:10.1242/dev.113.4.1105
  • Tabano S, Colapietro P, Cetin I, et al. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction. Epigenetics-Us. 2010;5(4):313–324. doi:10.4161/epi.5.4.11637
  • Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B. Tumour-suppressor activity of H19 RNA. Nature. 1993;365(6448):764–767. doi:10.1038/365764a0
  • Zhang DM, Lin ZY, Yang ZH, et al. IncRNA H19 promotes tongue squamous cell carcinoma progression through beta-catenin/GSK3beta/EMT signaling via association with EZH2. Am J Transl Res. 2017;9(7):3474–3486.
  • Wu T, Qu L, He G, et al. Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget. 2016;7(10):11553–11566. doi:10.18632/oncotarget.7270
  • Lu Q, Guo Z, Xie W, et al. The lncRNA h19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflammation. 2018;41(3):896–903. doi:10.1007/s10753-018-0744-4
  • Choong OK, Chen CY, Zhang J, et al. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Theranostics. 2019;9(22):6550–6567. doi:10.7150/thno.35218
  • Kuo MY, Chen HM, Hahn LJ, Hsieh CC, Chiang CP. Collagen biosynthesis in human oral submucous fibrosis fibroblast cultures. J Dent Res. 1995;74(11):1783–1788. doi:10.1177/00220345950740111101
  • Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(7341):120–124. doi:10.1038/nature09819
  • Ghafouri-Fard S, Dashti S, Taheri M. The HOTTIP (HOXA transcript at the distal tip) lncRNA: review of oncogenic roles in human. Biomed Pharmacother. 2020;127:110158. doi:10.1016/j.biopha.2020.110158
  • Wang KC, Yang YW, Liu B, et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature. 2011;472(7341):120–124.
  • Huang GZ, Wu QQ, Zheng ZN, Shao TR, Lv XZ. Identification of candidate biomarkers and analysis of prognostic values in oral squamous cell carcinoma. Front Oncol. 2019;9:1054. doi:10.3389/fonc.2019.01054
  • Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-beta pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS One. 2012;7(12):e51806. doi:10.1371/journal.pone.0051806
  • Bertozzi D, Iurlaro R, Sordet O, et al. Characterization of novel antisense HIF-1alpha transcripts in human cancers. Cell Cycle. 2011;10(18):3189–3197. doi:10.4161/cc.10.18.17183
  • Lee SS, Tsai CH, Yang SF, Ho YC, Chang YC. Hypoxia inducible factor-1alpha expression in areca quid chewing-associated oral squamous cell carcinomas. Oral Dis. 2010;16(7):696–701. doi:10.1111/j.1601-0825.2010.01680.x
  • Uehara M, Sano K, Ikeda H, Nonaka M, Asahina I. Hypoxia-inducible factor 1 alpha in oral squamous cell carcinoma and its relation to prognosis. Oral Oncol. 2009;45(3):241–246. doi:10.1016/j.oraloncology.2008.05.007
  • Tilakaratne WM, Iqbal Z, Teh MT, et al. Upregulation of HIF-1alpha in malignant transformation of oral submucous fibrosis. J Oral Pathol Med. 2008;37(6):372–377. doi:10.1111/j.1600-0714.2007.00625.x
  • Deng L, Jing N, Tan G, et al. A common region of allelic loss on chromosome region 3p25.3-26.3 in nasopharyngeal carcinoma. Genes Chromosomes Cancer. 1998;23(1):21–25. doi:10.1002/(SICI)1098-2264(199809)23:1<21::AID-GCC4>3.0.CO;2-8
  • Yu H, Xu Q, Liu F, et al. Identification and validation of long noncoding RNA biomarkers in human non-small-cell lung carcinomas. J Thorac Oncol. 2015;10(4):645–654. doi:10.1097/JTO.0000000000000470
  • Xie Y, Bin L, Yang J, et al. Molecular cloning and characterization of NAG-7: a novel gene downregulated in human nasopharyngeal carcinoma. Chin Med J. 2001;114(5):530–534.
  • Min X, Liu K, Zhu H, Zhang J. Long noncoding RNA LINC003121 inhibits proliferation and invasion of thyroid cancer cells by suppression of the Phosphatidylinositol-3-Kinase (PI3K)/Akt signaling pathway. Med Sci Monit. 2018;24:4592–4601. doi:10.12659/MSM.908652
  • Li G, Wang C, Wang Y, Xu B, Zhang W. LINC00312 represses proliferation and metastasis of colorectal cancer cells by regulation of miR-21. J Cell Mol Med. 2018;22(11):5565–5572. doi:10.1111/jcmm.13830
  • Wu J, Zhou X, Fan Y, et al. Long non-coding RNA 00312 downregulates cyclin B1 and inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo. Biochem Biophys Res Commun. 2018;497(1):173–180. doi:10.1016/j.bbrc.2018.02.049
  • Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell. 2001;12(9):2730–2741. doi:10.1091/mbc.12.9.2730
  • Tsai CC, Ma RH, Shieh TY. Deficiency in collagen and fibronectin phagocytosis by human buccal mucosa fibroblasts in vitro as a possible mechanism for oral submucous fibrosis. J Oral Pathol Med. 1999;28(2):59–63. doi:10.1111/j.1600-0714.1999.tb01997.x
  • Nam RK, Zhang WW, Loblaw DA, et al. A genome-wide association screen identifies regions on chromosomes 1q25 and 7p21 as risk loci for sporadic prostate cancer. Prostate Cancer Prostatic Dis. 2008;11(3):241–246. doi:10.1038/sj.pcan.4501010
  • Smith CM, Steitz JA. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5’-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Mol Cell Biol. 1998;18(12):6897–6909. doi:10.1128/MCB.18.12.6897
  • Raho G, Barone V, Rossi D, Philipson L, Sorrentino V. The gas 5 gene shows four alternative splicing patterns without coding for a protein. Gene. 2000;256(1–2):13–17. doi:10.1016/S0378-1119(00)00363-2
  • Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal. 2010;3(107):a8. doi:10.1126/scisignal.2000568
  • Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 2008;121(Pt 7):939–946. doi:10.1242/jcs.024646
  • Bian EB, Xiong ZG, Li J. New advances of lncRNAs in liver fibrosis, with specific focus on lncRNA-miRNA interactions. J Cell Physiol. 2019;234(3):2194–2203. doi:10.1002/jcp.27069
  • Wu Y, Lyu H, Liu H, et al. Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Sci Rep. 2016;6:31093. doi:10.1038/srep31093
  • Hutchinson JN, Ensminger AW, Clemson CM, et al. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. Bmc Genomics. 2007;8:39. doi:10.1186/1471-2164-8-39
  • Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 2019;10(1):1495. doi:10.1038/s41467-019-09482-6
  • Jia H, Wang X, Sun Z. Exploring the molecular pathogenesis and biomarkers of high risk oral premalignant lesions on the basis of long noncoding RNA expression profiling by serial analysis of gene expression. Eur J Cancer Prev. 2018;27(4):370–378. doi:10.1097/CEJ.0000000000000346
  • Huang G, He X, Wei XL. LncRNA NEAT1 promotes cell proliferation and invasion by regulating miR365/RGS20 in oral squamous cell carcinoma. Oncol Rep. 2018;39(4):1948–1956.
  • An H, Tan JT, Shelkovnikova TA. Stress granules regulate stress-induced paraspeckle assembly. J Cell Biol. 2019;218(12):4127–4140. doi:10.1083/jcb.201904098
  • Chang YC, Tsai CH, Lai YL, et al. Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1. J Cell Mol Med. 2014;18(4):698–708. doi:10.1111/jcmm.12219
  • Wang J, Jiang C, Li N, et al. The circEPSTI1/mir-942-5p/LTBP2 axis regulates the progression of OSCC in the background of OSF via EMT and the PI3K/Akt/mTOR pathway. Cell Death Dis. 2020;11(8):682. doi:10.1038/s41419-020-02851-w
  • Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-beta pathway by areca nut constituents: a possible cause of oral submucous fibrosis. PLoS One. 2012;7(12):e51806.
  • Shetty SS, Sharma M, Fonseca FP, et al. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. Jpn Dent Sci Rev. 2020;56(1):97–108. doi:10.1016/j.jdsr.2020.07.002
  • Haque MF, Meghji S, Khitab U, Harris M. Oral submucous fibrosis patients have altered levels of cytokine production. J Oral Pathol Med. 2000;29(3):123–128. doi:10.1034/j.1600-0714.2000.290304.x
  • Moutasim KA, Jenei V, Sapienza K, et al. Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis. J Pathol. 2011;223(3):366–377. doi:10.1002/path.2786
  • Khan I, Agarwal P, Thangjam GS, et al. Role of TGF-beta and BMP7 in the pathogenesis of oral submucous fibrosis. Growth Factors. 2011;29(4):119–127. doi:10.3109/08977194.2011.582839
  • Huang ZP, Ding Y, Chen J, et al. Long non-coding RNAs link extracellular matrix gene expression to ischemic cardiomyopathy. Cardiovasc Res. 2016;112(2):543–554. doi:10.1093/cvr/cvw201
  • Monteiro R, Hallikeri K, Sudhakaran A. PTEN and alpha-SMA expression and diagnostic role in oral submucous fibrosis and oral squamous cell carcinoma with concomitant oral submucous fibrosis. J Oral Maxillofac Res. 2021;12(1):e3. doi:10.5037/jomr.2021.12103
  • Suwanabol PA, Seedial SM, Zhang F, et al. TGF-beta and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2012;302(11):H2211–H2219. doi:10.1152/ajpheart.00966.2011
  • Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):e8. doi:10.1126/scisignal.2005189
  • Angadi PV, Krishnapillai R. Evaluation of PTEN immunoexpression in oral submucous fibrosis: role in pathogenesis and malignant transformation. Head Neck Pathol. 2012;6(3):314–321. doi:10.1007/s12105-012-0341-z
  • Nangaku M, Inagi R, Miyata T, Fujita T. Hypoxia and hypoxia-inducible factor in renal disease. Nephron Exp Nephrol. 2008;110(1):e1–e7. doi:10.1159/000148256
  • Nangaku M, Eckardt KU. Hypoxia and the HIF system in kidney disease. J Mol Med (Berl). 2007;85(12):1325–1330. doi:10.1007/s00109-007-0278-y
  • Liu M, Ning X, Li R, et al. Signalling pathways involved in hypoxia-induced renal fibrosis. J Cell Mol Med. 2017;21(7):1248–1259. doi:10.1111/jcmm.13060
  • Eckardt KU, Bernhardt W, Willam C, Wiesener M. Hypoxia-inducible transcription factors and their role in renal disease. Semin Nephrol. 2007;27(3):363–372. doi:10.1016/j.semnephrol.2007.02.007
  • Masoud GN, Li W. HIF-1alpha pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5(5):378–389. doi:10.1016/j.apsb.2015.05.007
  • Zhang W, Shi X, Peng Y, et al. HIF-1alpha promotes Epithelial-Mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One. 2015;10(6):e129603.
  • Zhu Y, Tan J, Xie H, et al. HIF-1alpha regulates EMT via the Snail and beta-catenin pathways in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol Med. 2016;20(4):688–697. doi:10.1111/jcmm.12769
  • Chaudhary M, Bajaj S, Bohra S, Swastika N, Hande A. The domino effect: role of hypoxia in malignant transformation of oral submucous fibrosis. J Oral Maxillofac Pathol. 2015;19(2):122–127. doi:10.4103/0973-029X.164519
  • Acun A, Zorlutuna P. Engineered myocardium model to study the roles of HIF-1alpha and HIF1A-AS1 in paracrine-only signaling under pathological level oxidative stress. Acta Biomater. 2017;58:323–336. doi:10.1016/j.actbio.2017.06.023
  • Shih YH, Wang TH, Shieh TM, Tseng YH. Oral Submucous Fibrosis: a Review on Etiopathogenesis, Diagnosis, and Therapy. Int J Mol Sci. 2019;20:12. doi:10.3390/ijms20122940
  • More CB, Rao NR. Proposed clinical definition for oral submucous fibrosis. J Oral Biol Craniofac Res. 2019;9(4):311–314. doi:10.1016/j.jobcr.2019.06.016
  • Zhou S, Zhu Y, He Z, et al. Long Non-Coding RNA expression profile associated with malignant progression of oral submucous fibrosis. J Oncol. 2019;2019:6835176. doi:10.1155/2019/6835176
  • De Rubis G, Rajeev KS, Bebawy M. Liquid biopsies in cancer diagnosis, monitoring, and prognosis. Trends Pharmacol Sci. 2019;40(3):172–186. doi:10.1016/j.tips.2019.01.006
  • Arantes L, De Carvalho AC, Melendez ME, Lopes CA. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18(1):85–112. doi:10.1080/14737159.2017.1404906
  • Lousada-Fernandez F, Rapado-Gonzalez O, Lopez-Cedrun JL, et al. Liquid biopsy in oral cancer. Int J Mol Sci. 2018;19(6):1704. doi:10.3390/ijms19061704
  • Zheng X, Tian X, Zhang Q, Shi P, Li S. Long non-coding RNA SAMMSON as a novel potential diagnostic and prognostic biomarker for oral squamous cell carcinoma. J Dent Sci. 2020;15(3):329–335. doi:10.1016/j.jds.2019.11.008
  • Zhang X, Guo B, Zhu Y, et al. Up-regulation of plasma lncRNA CACS15 distinguished early-stage oral squamous cell carcinoma patient. Oral Dis. 2020;26(8):1619–1624. doi:10.1111/odi.13245
  • Languino LR, Singh A, Prisco M, et al. Exosome-mediated transfer from the tumor microenvironment increases TGFbeta signaling in squamous cell carcinoma. Am J Transl Res. 2016;8(5):2432–2437.
  • Xie L, Zeng Y. Therapeutic potential of exosomes in pulmonary fibrosis. Front Pharmacol. 2020;11:590972. doi:10.3389/fphar.2020.590972
  • Gao M, Yu F, Lv C, Choo J, Chen L. Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev. 2017;46(8):2237–2271.
  • Zhang S, Chen H, Yue D, et al. Long non-coding RNAs: promising new targets in pulmonary fibrosis. J Gene Med. 2021;23(3):e3318. doi:10.1002/jgm.3318
  • Chen X, Zhang D, Su N, et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat Biotechnol. 2019;37(11):1287–1293. doi:10.1038/s41587-019-0249-1