77
Views
3
CrossRef citations to date
0
Altmetric
Original Research

The Network of Pro-Inflammatory Factors CD147, DcR3, and IL33 in the Development of Kawasaki Disease

, , , ORCID Icon, , , , , , , & show all
Pages 6043-6053 | Published online: 19 Nov 2021

References

  • McCrindle BW, Rowley AH, Newburger JW, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017;135(17):e927–e999. doi:10.1161/CIR.0000000000000484
  • Matsubara T, Ichiyama T, Furukawa S. Immunological profile of peripheral blood lymphocytes and monocytes/macrophages in Kawasaki disease. Clin Exp Immunol. 2005;141(3):381–387. doi:10.1111/j.1365-2249.2005.02821.x
  • Franco A, Shimizu C, Tremoulet AH, Burns JC. Memory T-cells and characterization of peripheral T-cell clones in acute Kawasaki disease. Autoimmunity. 2010;43(4):317–324. doi:10.3109/08916930903405891
  • Muramatsu T. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners. J Biochem. 2016;159(5):481–490. doi:10.1093/jb/mvv127
  • Li K, Nowak RA. The role of basigin in reproduction. Reproduction. 2020;159:R97–R109.
  • Zong J, Li Y, Du D, Liu Y, Yin Y. CD147 induces up-regulation of vascular endothelial growth factor in U937-derived foam cells through PI3K/AKT pathway. Arch Biochem Biophys. 2016;609:31–38. doi:10.1016/j.abb.2016.09.001
  • Kurosawa R, Satoh K, Nakata T, et al. Identification of celastrol as a novel therapeutic agent for pulmonary arterial hypertension and right ventricular failure through suppression of Bsg (Basigin)/CyPA (Cyclophilin A). Arterioscler Thromb Vasc Biol. 2021;41(3):1205–1217. doi:10.1161/ATVBAHA.120.315731
  • Rahat MA, Safieh M, Simanovich E, et al. The role of EMMPRIN/CD147 in regulating angiogenesis in patients with psoriatic arthritis. Arthritis Res Ther. 2020;22(1):240. doi:10.1186/s13075-020-02333-6
  • Weng SC, Tarng DC. Role of prognostic biomarker decoy receptor 3 and immunomodulation in kidney diseases. J Chin Med Assoc. 2019;82(9):680–684. doi:10.1097/JCMA.0000000000000149
  • Migone TS, Zhang J, Luo X, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16(3):479–492. doi:10.1016/S1074-7613(02)00283-2
  • Li XY, Hou HT, Chen HX, Wang ZQ, He GW. Increased circulating levels of tumor necrosis factor-like cytokine 1A and decoy receptor 3 correlate with SYNTAX score in patients undergoing coronary surgery. J Int Med Res. 2018;46(12):5167–5175. doi:10.1177/0300060518793787
  • Chen X, Wang R, Chen W, Lai L, Li Z. Decoy receptor-3 regulates inflammation and apoptosis via PI3K/AKT signaling pathway in coronary heart disease. Exp Ther Med. 2019;17(4):2614–2622.
  • Lohning M, Stroehmann A, Coyle AJ, et al. T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci U S A. 1998;95(12):6930–6935. doi:10.1073/pnas.95.12.6930
  • Schmitz J, Owyang A, Oldham E, et al. IL33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–490. doi:10.1016/j.immuni.2005.09.015
  • Allakhverdi Z, Smith DE, Comeau MR, Delespesse G. Cutting edge: the ST2 ligand IL33 potently activates and drives maturation of human mast cells. J Immunol. 2007;179(4):2051–2054. doi:10.4049/jimmunol.179.4.2051
  • Iikura M, Suto H, Kajiwara N, et al. IL33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest. 2007;87(10):971–978. doi:10.1038/labinvest.3700663
  • Stojkovic S, Kaun C, Heinz M, et al. Interleukin-33 induces urokinase in human endothelial cells – possible impact on angiogenesis. J Thromb Haemost. 2014;12(6):948–957. doi:10.1111/jth.12581
  • Drube S, Kraft F, Dudeck J, et al. MK2/3 are pivotal for IL33-induced and mast cell-dependent leukocyte recruitment and the resulting skin inflammation. J Immunol. 2016;197(9):3662–3668. doi:10.4049/jimmunol.1600658
  • An X, Lv H, Tian J, He X, Ling N. Role of the PTEN/PI3K/VEGF pathway in the development of Kawasaki disease. Exp Ther Med. 2016;11(4):1318–1322. doi:10.3892/etm.2016.3026
  • Singh SS, Yap WN, Arfuso F, et al. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: a reality for personalized medicine? World J Gastroenterol. 2015;21(43):12261–12273. doi:10.3748/wjg.v21.i43.12261
  • Fang F, Wang L, Zhang S, et al. CD147 modulates autophagy through the PI3K/Akt/mTOR pathway in human prostate cancer PC-3 cells. Oncol Lett. 2015;9(3):1439–1443. doi:10.3892/ol.2015.2849
  • Zhong M, Qiu X, Liu Y, et al. TIPE regulates DcR3 expression and function by activating the PI3K/AKT signaling pathway in CRC. Front Oncol. 2020;10:623048. doi:10.3389/fonc.2020.623048
  • Wang S, Zhao G, Zhao S, Qiao Y, Yang H. The effects of interleukin-33 (IL33) on osteosarcoma cell viability, apoptosis, and epithelial-mesenchymal transition are mediated through the PI3K/AKT pathway. Med Sci Monit. 2020;26:e920766.
  • Maddur MS, Stephen-Victor E, Das M, et al. Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy. J Neuroinflammation. 2017;14(1):58. doi:10.1186/s12974-017-0818-5
  • Tjon AS, van Gent R, Jaadar H, et al. Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL-13 production. J Immunol. 2014;192(12):5625–5634. doi:10.4049/jimmunol.1301260
  • Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res. 2018;46(W1):W60–W64. doi:10.1093/nar/gky311
  • Pennings GJ, Kritharides L. CD147 in cardiovascular disease and thrombosis. Semin Thromb Hemost. 2014;40(7):747–755. doi:10.1055/s-0034-1390001
  • Wang Y, Wang W, Gong F, et al. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease. Arthritis Rheum. 2013;65(3):805–814. doi:10.1002/art.37815
  • Subedi S, Gong Y, Chen Y, Shi Y. Infliximab and biosimilar infliximab in psoriasis: efficacy, loss of efficacy, and adverse events. Drug Des Devel Ther. 2019;13:2491–2502. doi:10.2147/DDDT.S200147
  • Lu Z, Wang F, Lv H. Efficacy of infliximab in the treatment of Kawasaki disease: a systematic review and meta-analysis. Exp Ther Med. 2021;21(1):15.
  • Son MB, Gauvreau K, Burns JC, et al. Infliximab for intravenous immunoglobulin resistance in Kawasaki disease: a retrospective study. J Pediatr. 2011;158(4):644–649. doi:10.1016/j.jpeds.2010.10.012
  • Li D, Li X, Dou W, Zheng Y. The effectiveness of infliximab for Kawasaki disease in children: systematic review and meta-analysis. Transl Pediatr. 2021;10(5):1294–1306. doi:10.21037/tp-20-482