124
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Modulation of Sirt1-mTORC1 Pathway in Microglia Attenuates Retinal Ganglion Cell Loss After Optic Nerve Injury

, ORCID Icon, , , , , , & ORCID Icon show all
Pages 6857-6869 | Published online: 14 Dec 2021

References

  • Weinreb RN, Leung CK, Crowston JG, et al. Primary open-angle glaucoma. Nature Reviews. Disease Primers. 2016;2(1):16067. doi:10.1038/nrdp.2016.67
  • Shah SM, Khanna CL. Ophthalmic Emergencies for the Clinician. Mayo Clin proc. 2020;95(5):1050–1058. doi:10.1016/j.mayocp.2020.03.018
  • Williams PR, Benowitz LI, Goldberg JL, He Z. Axon Regeneration in the Mammalian Optic Nerve. Ann Rev Vision Sci. 2020;6:195–213. doi:10.1146/annurev-vision-022720-094953
  • Ransom BR, Orkand RK. Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends Neurosci. 1996;19(8):352–358. doi:10.1016/0166-2236(96)10045-X
  • Dezawa M, Adachi-Usami E. Role of Schwann cells in retinal ganglion cell axon regeneration. Prog Retin Eye Res. 2000;19(2):171–204. doi:10.1016/S1350-9462(99)00010-5
  • Yazdankhah M, Shang P, Ghosh S, et al. Role of glia in optic nerve. Prog Retin Eye Res. 2021;81:100886. doi:10.1016/j.preteyeres.2020.100886
  • Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705. doi:10.1016/j.neuron.2012.03.026
  • Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol. 2019;10:1975. doi:10.3389/fimmu.2019.01975
  • Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–1394. doi:10.1038/nn1997
  • Huang Z, Zhou T, Sun X, et al. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018;25(1):180–189. doi:10.1038/cdd.2017.141
  • Cai XF, Lin S, Geng Z, et al. Integrin CD11b Deficiency Aggravates Retinal Microglial Activation and RGCs Degeneration After Acute Optic Nerve Injury. Neurochem Res. 2020;45(5):1072–1085. doi:10.1007/s11064-020-02984-6
  • Zhao X, Sun R, Luo X, Wang F, Sun X. The Interaction Between Microglia and Macroglia in Glaucoma. Front Neurosci. 2021;15:610788. doi:10.3389/fnins.2021.610788
  • Cheadle L, Rivera SA, Phelps JS, et al. Sensory Experience Engages Microglia to Shape Neural Connectivity through a Non-Phagocytic Mechanism. Neuron. 2020;108(3):451–468.e459. doi:10.1016/j.neuron.2020.08.002
  • Zarb Y, Sridhar S. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7(9):545.
  • Guerrero A, De Strooper B, Arancibia-Cárcamo IL. Cellular senescence at the crossroads of inflammation and Alzheimer’s disease. Trends Neurosci. 2021;44(9):714–727. doi:10.1016/j.tins.2021.06.007
  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews. Neurology. 2021;17(3):157–172. doi:10.1038/s41582-020-00435-y
  • Wan X, Garg NJ. Sirtuin Control of Mitochondrial Dysfunction, Oxidative Stress, and Inflammation in Chagas Disease Models. Front Cell Infect Microbiol. 2021;11:693051. doi:10.3389/fcimb.2021.693051
  • Gomes BAQ, Silva JPB, Romeiro CFR. Neuroprotective Mechanisms of Resveratrol in Alzheimer’s Disease: role of SIRT1. Oxidative Medicine and Cellular Longevity. 2018;2018:8152373. doi:10.1155/2018/8152373
  • Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005;280(48):40364–40374. doi:10.1074/jbc.M509329200
  • Cho SH, Chen JA, Sayed F. SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1β. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2015;35(2):807–818. doi:10.1523/JNEUROSCI.2939-14.2015
  • Murugan AK. mTOR: role in cancer, metastasis and drug resistance. Semin Cancer Biol. 2019;59:92–111. doi:10.1016/j.semcancer.2019.07.003
  • Dunlop EA, Tee AR. Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. Cell Signal. 2009;21(6):827–835. doi:10.1016/j.cellsig.2009.01.012
  • Hong S, Zhao B, Lombard DB, Fingar DC, Inoki K. Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem. 2014;289(19):13132–13141. doi:10.1074/jbc.M113.520734
  • Yin H, Hu M, Liang X, et al. Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology. 2014;146(3):801–811. doi:10.1053/j.gastro.2013.11.008
  • Jin X, Kang X, Zhao L, et al. Cartilage Ablation of Sirt1 Causes Inhibition of Growth Plate Chondrogenesis by Hyperactivation of mTORC1 Signaling. Endocrinology. 2019;160(12):3001–3017. doi:10.1210/en.2019-00427
  • Giacci MK, Bartlett CA, Huynh M, Kilburn MR, Dunlop SA, Fitzgerald M. Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves. Scientific Reports. 2018;8(1):3979. doi:10.1038/s41598-018-22361-2
  • Galindo-Romero C, Avilés-Trigueros M, Jiménez-López M, et al. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp Eye Res. 2011;92(5):377–387. doi:10.1016/j.exer.2011.02.008
  • Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, et al. Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci. 2009;50(8):3860–3868. doi:10.1167/iovs.08-3267
  • Nadal-Nicolás FM, Sobrado-Calvo P, Jiménez-López M, Vidal-Sanz M, Agudo-Barriuso M. Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer. Invest Ophthalmol Vis Sci. 2015;56(10):6095–6112. doi:10.1167/iovs.15-17195
  • Nadal-Nicolás FM, Jiménez-López M, Salinas-Navarro M, Sobrado-Calvo P, Vidal-Sanz M, Agudo-Barriuso M. Microglial dynamics after axotomy-induced retinal ganglion cell death. J Neuroinflammation. 2017;14(1):218. doi:10.1186/s12974-017-0982-7
  • Rodriguez AR, de Sevilla Müller LP, Brecha NC. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol. 2014;522(6):1411–1443. doi:10.1002/cne.23521
  • Jecrois ES, Zheng W, Bornhorst M, et al. Treatment during a developmental window prevents NF1-associated optic pathway gliomas by targeting Erk-dependent migrating glial progenitors. Dev Cell. 2021;56(20):2871–2885.e2876. doi:10.1016/j.devcel.2021.08.004
  • Rovere G, Nadal-Nicolás FM, Agudo-Barriuso M, et al. Comparison of Retinal Nerve Fiber Layer Thinning and Retinal Ganglion Cell Loss After Optic Nerve Transection in Adult Albino Rats. Invest Ophthalmol Vis Sci. 2015;56(8):4487–4498. doi:10.1167/iovs.15-17145
  • Cao P, Chen C, Liu A, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109(16):2573–2589.e2579. doi:10.1016/j.neuron.2021.06.012
  • Yu C, Roubeix C, Sennlaub F, Saban DR. Microglia versus Monocytes: distinct Roles in Degenerative Diseases of the Retina. Trends Neurosci. 2020;43(6):433–449. doi:10.1016/j.tins.2020.03.012
  • Heuss ND, Pierson MJ, Roehrich H, et al. Optic nerve as a source of activated retinal microglia post-injury. Acta Neuropathologica Communications. 2018;6(1):66. doi:10.1186/s40478-018-0571-8
  • Jing L, Hou L, Zhang D, et al. Microglial Activation Mediates Noradrenergic Locus Coeruleus Neurodegeneration via Complement Receptor 3 in a Rotenone-Induced Parkinson’s Disease Mouse Model. J Inflamm Res. 2021;14:1341–1356. doi:10.2147/JIR.S299927
  • Dagher NN, Najafi AR, Kayala KM, et al. Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation. 2015;12:139. doi:10.1186/s12974-015-0366-9
  • Unger MS, Schernthaner P, Marschallinger J, Mrowetz H, Aigner L. Microglia prevent peripheral immune cell invasion and promote an anti-inflammatory environment in the brain of APP-PS1 transgenic mice. J Neuroinflammation. 2018;15(1):274. doi:10.1186/s12974-018-1304-4
  • Spangenberg E, Severson PL, Hohsfield LA, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nature Communications. 2019;10(1):3758. doi:10.1038/s41467-019-11674-z
  • Casali BT, MacPherson KP, Reed-Geaghan EG, Landreth GE. Microglia depletion rapidly and reversibly alters amyloid pathology by modification of plaque compaction and morphologies. Neurobiol Dis. 2020;142:104956. doi:10.1016/j.nbd.2020.104956
  • Henry RJ, Ritzel RM, Barrett JP, et al. Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2020;40(14):2960–2974. doi:10.1523/JNEUROSCI.2402-19.2020
  • Dziabis JE, Quan N, Eiferman DS, et al. Traumatic Brain Injury Causes Chronic Cortical Inflammation and Neuronal Dysfunction Mediated by Microglia. J Neurosci. 2021;41(7):1597–1616. doi:10.1523/JNEUROSCI.2469-20.2020
  • Hilla AM, Diekmann H, Fischer D. Microglia Are Irrelevant for Neuronal Degeneration and Axon Regeneration after Acute Injury. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 2017;37(25):6113–6124. doi:10.1523/JNEUROSCI.0584-17.2017
  • Vessey KA, Waugh M, Jobling AI, et al. Assessment of Retinal Function and Morphology in Aging Ccl2 Knockout Mice. Invest Ophthalmol Vis Sci. 2015;56(2):1238–1252. doi:10.1167/iovs.14-15334
  • Zhang Y, Zhao L, Wang X. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Science Advances. 2018;4(3):eaap8492. doi:10.1126/sciadv.aap8492
  • Takeda A, Shinozaki Y, Kashiwagi K, Ohno N, Eto K, Wake H. Microglia mediate non-cell-autonomous cell death of retinal ganglion cells. Glia. 2018;66(11):2366–2384. doi:10.1002/glia.23475
  • Chen X, Chen C, Fan S, et al. Omega-3 polyunsaturated fatty acid attenuates the inflammatory response by modulating microglia polarization through SIRT1-mediated deacetylation of the HMGB1/NF-κB pathway following experimental traumatic brain injury. J Neuroinflammation. 2018;15(1):116. doi:10.1186/s12974-018-1151-3
  • Li K, Wei X, Zhang L, Chi H, Yang J. Raptor/mTORC1 Acts as a Modulatory Center to Regulate Anti-bacterial Immune Response in Rockfish. Front Immunol. 2019;10:2953. doi:10.3389/fimmu.2019.02953
  • Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2):e9199. doi:10.1371/journal.pone.0009199