80
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Investigation of Association of Complement 5 Genetic Polymorphisms with Sepsis and Sepsis-Induced Inflammatory Responses

, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 6461-6475 | Published online: 02 Dec 2021

References

  • Hotchkiss RS, Sherwood ER. Immunology. Getting sepsis therapy right. Science. 2015;347(6227):1201–1202. doi:10.1126/science.aaa8334
  • Bosurgi R. Sepsis: a need for new solutions. Lancet Infect Dis. 2015;15(5):498–499. doi:10.1016/S1473-3099(15)70030-7
  • Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614. doi:10.1016/S1473-3099(15)70112-X
  • Lu H, Wen D, Wang X, et al. Host genetic variants in sepsis risk: a field synopsis and meta-analysis. Crit Care. 2019;23(1):26. doi:10.1186/s13054-019-2313-0
  • Lu F, Chen H, Hong Y, et al. A gain-of-function NLRP3 3’-UTR polymorphism causes miR-146a-mediated suppression of NLRP3 expression and confers protection against sepsis progression. Sci Rep. 2021;11(1):13300. doi:10.1038/s41598-021-92547-8
  • He J, Chen Y, Lin Y, et al. Association study of MCP-1 promoter polymorphisms with the susceptibility and progression of sepsis. PLoS One. 2017;12(5):e0176781. doi:10.1371/journal.pone.0176781
  • He J, Zhang Q, Zhang W, et al. The interleukin-27-964A>G polymorphism enhances sepsis-induced inflammatory responses and confers susceptibility to the development of sepsis. Crit Care. 2018;22(1):248. doi:10.1186/s13054-018-2180-0
  • Romano R, Giardino G, Cirillo E, Prencipe R, Pignata C. Complement system network in cell physiology and in human diseases. Int Rev Immunol. 2021;40(3):159–170. doi:10.1080/08830185.2020.1833877
  • Guo RF, Ward PA. Role of C5a in inflammatory responses. Annu Rev Immunol. 2005;23:821–852. doi:10.1146/annurev.immunol.23.021704.115835
  • Zetoune FS, Ward PA. Role of complement and histones in sepsis. Front Med. 2020;7:616957. doi:10.3389/fmed.2020.616957
  • Ward PA. The dark side of C5a in sepsis. Nat Rev Immunol. 2004;4(2):133–142. doi:10.1038/nri1269
  • Helling H, Stephan B, Pindur G, Prantl L, Jung EM, Jung F. Coagulation and complement system in critically ill patients. Clin Hemorheol Microcirc. 2015;61(2):185–193. doi:10.3233/CH-151993
  • Fischer MB, Prodeus AP, Nicholson-Weller A, et al. Increased susceptibility to endotoxin shock in complement C3- and C4-deficient mice is corrected by C1 inhibitor replacement. J Immunol. 1997;159(2):976–982.
  • Prodeus AP, Zhou X, Maurer M, Galli SJ, Carroll MC. Impaired mast cell-dependent natural immunity in complement C3-deficient mice. Nature. 1997;390(6656):172–175. doi:10.1038/36586
  • Buras JA, Rice L, Orlow D, et al. Inhibition of C5 or absence of C6 protects from sepsis mortality. Immunobiology. 2004;209(8):629–635. doi:10.1016/j.imbio.2004.09.004
  • Hangen DH, Bloom RJ, Stevens JH, et al. Adult respiratory distress syndrome. A live E coli septic primate model. Am J Pathol. 1987;126:396–400.
  • Stevens JH, O’Hanley P, Shapiro JM, et al. Effects of anti-C5a antibodies on the adult respiratory distress syndrome in septic primates. J Clin Invest. 1986;77:1812–1816. doi:10.1172/JCI112506
  • Nieuwenhuijzen GA, Meyer MP, Hendriks T, Goris RJ. Deficiency of complement factor C5 reduces early mortality but does not prevent organ damage in an animal model of multiple organ dysfunction syndrome. Crit Care Med. 1995;23(10):1686–1693. doi:10.1097/00003246-199510000-00013
  • Keshari RS, Silasi R, Popescu NI, et al. Inhibition of complement C5 protects against organ failure and reduces mortality in a baboon model of Escherichia coli sepsis. Proc Natl Acad Sci U S A. 2017;114(31):E6390–E6399. doi:10.1073/pnas.1706818114
  • Czermak BJ, Sarma V, Pierson CL, et al. Protective effects of C5a blockade in sepsis. Nat Med. 1999;5(7):788–792. doi:10.1038/10512
  • Ward PA. The harmful role of c5a on innate immunity in sepsis. J Innate Immun. 2010;2(5):439–445. doi:10.1159/000317194
  • Harris CL, Heurich M, Rodriguez de Cordoba S, Morgan BP. The complotype: dictating risk for inflammation and infection. Trends Immunol. 2012;33(10):513–521. doi:10.1016/j.it.2012.06.001
  • Arnaout R, Al Shorbaghi S, Al Dhekri H, et al. C5 complement deficiency in a Saudi family, molecular characterization of mutation and literature review. J Clin Immunol. 2013;33(4):871–875. doi:10.1007/s10875-013-9872-7
  • Zervou MI, Vazgiourakis VM, Yilmaz N, et al. TRAF1/C5, eNOS, C1q, but not STAT4 and PTPN22 gene polymorphisms are associated with genetic susceptibility to systemic lupus erythematosus in Turkey. Hum Immunol. 2011;72(12):1210–1213. doi:10.1016/j.humimm.2011.09.003
  • Huang SC, Hua DJ, Sun QQ, Zhang LN, Cen H, Zhou L. Associations of TRAF1/C5 rs10818488 and rs3761847 polymorphisms with genetic susceptibility to rheumatoid arthritis: a case-control study and updated meta-analysis. Cent Eur J Immunol. 2019;44(2):159–173. doi:10.5114/ceji.2019.87067
  • Xu D, Yi H, Yu S, Li X, Qiao Y, Deng W. Association of complement C5 gene polymorphisms with proliferative diabetic retinopathy of type 2 diabetes in a Chinese Han Population. PLoS One. 2016;11(3):e0149704. doi:10.1371/journal.pone.0149704
  • Giles JL, Choy E, van den Berg C, Morgan BP, Harris CL. Functional analysis of a complement polymorphism (rs17611) associated with rheumatoid arthritis. J Immunol. 2015;194(7):3029–3034. doi:10.4049/jimmunol.1402956
  • Guo L, Zheng L, Guo X, Chang Y, Zhou X, Sun Y. Single-nucleotide polymorphism rs17611 of complement component 5 shows association with ischemic stroke in Northeast Chinese Population. Genet Test Mol Biomarkers. 2016;20(12):766–770. doi:10.1089/gtmb.2016.0125
  • Woehrl B, Brouwer MC, Murr C, et al. Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. J Clin Invest. 2011;121(10):3943–3953. doi:10.1172/JCI57522
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–810. doi:10.1001/jama.2016.0287
  • Zhang W, Lu F, Xie Y, et al. miR-23b negatively regulates sepsis-induced inflammatory responses by targeting ADAM10 in human THP-1 monocytes. Mediators Inflamm. 2019;2019:5306541. doi:10.1155/2019/5306541
  • Schaeffer V, Cuschieri J, Garcia I, et al. The priming effect of C5a on monocytes is predominantly mediated by the p38 MAPK pathway. Shock. 2018;50(1):127.
  • Gotts JE, Matthay MA. Sepsis: pathophysiology and clinical management. BMJ. 2016;353:i1585. doi:10.1136/bmj.i1585
  • Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and functions of complement. Nat Immunol. 2017;18(12):1288–1298. doi:10.1038/ni.3858
  • Mollnes TE, Huber-Lang M. Complement in sepsis-when science meets clinics. FEBS Lett. 2020;594(16):2621–2632. doi:10.1002/1873-3468.13881
  • Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–516. doi:10.1038/s41577-019-0168-x
  • Riedemann NC, Guo RF, Ward PA. A key role of C5a/C5aR activation for the development of sepsis. J Leukoc Biol. 2003;74(6):966–970. doi:10.1189/jlb.0403137
  • Hoehlig K, Maasch C, Shushakova N, et al. A novel C5a-neutralizing mirror-image (l-)aptamer prevents organ failure and improves survival in experimental sepsis. Mol Ther. 2013;21(12):2236–2246. doi:10.1038/mt.2013.178
  • Rittirsch D, Flierl MA, Nadeau BA, et al. Functional roles for C5a receptors in sepsis. Nat Med. 2008;14(5):551–557. doi:10.1038/nm1753
  • Vollrath JT, Marzi I, Herminghaus A, Lustenberger T, Relja B. Post-traumatic sepsis is associated with increased C5a and decreased TAFI levels. J Clin Med. 2020;9(4):1230. doi:10.3390/jcm9041230
  • Gressner OA, Koch A, Sanson E, Trautwein C, Tacke F. High C5a levels are associated with increased mortality in sepsis patients–no enhancing effect by actin-free Gc-globulin. Clin Biochem. 2008;41(12):974–980. doi:10.1016/j.clinbiochem.2008.05.005
  • Riedemann NC, Guo RF, Bernacki KD, et al. Regulation by C5a of neutrophil activation during sepsis. Immunity. 2003;19(2):193–202. doi:10.1016/S1074-7613(03)00206-1
  • Xu D, Hou S, Jiang Y, et al. Complement C5 gene confers risk for acute anterior uveitis. Invest Ophthalmol Vis Sci. 2015;56(8):4954–4960. doi:10.1167/iovs.15-16645
  • Wu H, Weng Y, Zheng L, et al. Polymorphism of the complement 5 gene is associated with large artery atherosclerosis stroke in Chinese patients. Arq Neuropsiquiatr. 2016;74(11):881–886. doi:10.1590/0004-282x20160139
  • Hoke M, Speidl W, Schillinger M, et al. Polymorphism of the complement 5 gene and cardiovascular outcome in patients with atherosclerosis. Eur J Clin Invest. 2012;42(9):921–926. doi:10.1111/j.1365-2362.2012.02669.x
  • Yan C, Gao H. New insights for C5a and C5a receptors in sepsis. Front Immunol. 2012;3:368. doi:10.3389/fimmu.2012.00368
  • Ward PA. Role of C5 activation products in sepsis. Sci World J. 2010;10:2395–2402. doi:10.1100/tsw.2010.216
  • Guo RF, Riedemann NC, Ward PA. Role of C5a-C5aR interaction in sepsis. Shock. 2004;21(1):1–7. doi:10.1097/01.shk.0000105502.75189.5e
  • Höpken U, Mohr M, Strüber A, et al. Inhibition of interleukin-6 synthesis in an animal model of septic shock by anti-C5a monoclonal antibodies. Eur J Immunol. 1996;26(5):1103–1109. doi:10.1002/eji.1830260522
  • Riedemann NC, Guo RF, Hollmann TJ, et al. Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. FASEB J. 2004;18(2):370–372. doi:10.1096/fj.03-0708fje
  • Khameneh HJ, Ho AW, Laudisi F, et al. C5a regulates IL-1β production and leukocyte recruitment in a murine model of monosodium urate crystal-induced peritonitis. Front Pharmacol. 2017;8:10. doi:10.3389/fphar.2017.00010
  • Seow V, Lim J, Iyer A, et al. Inflammatory responses induced by lipopolysaccharide are amplified in primary human monocytes but suppressed in macrophages by complement protein C5a. J Immunol. 2013;191(8):4308–4316. doi:10.4049/jimmunol.1301355
  • Ehrnström B, Kojen JF, Giambelluca M, et al. TLR8 and complement C5 induce cytokine release and thrombin activation in human whole blood challenged with gram-positive bacteria. J Leukoc Biol. 2020;107(4):673–683. doi:10.1002/JLB.3A0120-114R