84
Views
3
CrossRef citations to date
0
Altmetric
Original Research

Dysregulation of the Retromer Complex in Brain Endothelial Cells Results in Accumulation of Phosphorylated Tau

, &
Pages 7455-7465 | Published online: 29 Dec 2021

References

  • Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis. 2013;36:437–449. doi:10.1007/s10545-013-9608-0
  • Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314:119–129. doi:10.1007/s00441-003-0751-z
  • Abbott NJ, Patabendige AAK, Dolman DEM, et al. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25. doi:10.1016/j.nbd.2009.07.030
  • Gonzalez-Carter D, Liu X, Tockary TA, et al. Targeting nanoparticles to the brain by exploiting the blood–brain barrier impermeability to selectively label the brain endothelium. Proc Natl Acad Sci USA. 2020;117(32):19141–19150. doi:10.1073/pnas.2002016117
  • Haqqani AS, Delaney CE, Brunette E, et al. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab. 2018;38:727–740. doi:10.1177/0271678X17740031
  • Bell L, Koeniger T, Tacke S, et al. Characterization of blood–brain barrier integrity in a B-cell-dependent mouse model of multiple sclerosis. Histochem Cell Biol. 2019;151(6):489–499. doi:10.1007/s00418-019-01768-6
  • Wu S, Liu H, Zhao H, et al. Environmental lead exposure aggravates the progression of Alzheimer’s disease in mice by targeting on blood brain barrier. Toxicol Lett. 2020;319:138–147. doi:10.1016/j.toxlet.2019.11.009
  • Wang H, Qi W, Zou C, et al. NEK1-mediated retromer trafficking promotes blood–brain barrier integrity by regulating glucose metabolism and RIPK1 activation. Nat Commun. 2021;12:4826. doi:10.1038/s41467-021-25157-7
  • Filippone A, Praticò D. Endosome dysregulation in down syndrome: a potential contributor to Alzheimer disease pathology. Ann Neurol. 2021;90(1):4–14. doi:10.1002/ana.26042
  • Vagnozzi A, Praticò D. Endosomal sorting and trafficking, the retromer complex and neurodegeneration. Mol Psychiatry. 2019;24:857–868. doi:10.1038/s41380-018-0221-3
  • Tang FL, Zhao L, Zhao Y, et al. Coupling of terminal differentiation deficit with neurodegenerative pathology in Vps-35-deficient pyramidal neurons. Cell Death Differ. 2020;27:2099–2116. doi:10.1038/s41418-019-0487-2
  • Toth AE, Nielsen SSE, Tomaka W, et al. The endo-lysosomal system of Bend.3 and hCMEC/D3 brain endothelial cells. Fluids Barriers CNS. 2019;16(1):14. doi:10.1186/s12987-019-0134-9
  • Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013;10(1):16. doi:10.1186/2045-8118-10-16
  • Li JG, Chiu J, Praticò D. Full recovery of the Alzheimer’s disease phenotype by gain of function of vacuolar protein sorting 35. Mol Psychiatry. 2020;25(10):2630–2640. doi:10.1038/s41380-019-0364-x
  • Vagnozzi AN, Li JG, Chiu J, et al. VPS35 regulates tau phosphorylation and neuropathology in tauopathy. Mol Psychiatry. 2019. doi:10.1038/s41380-019-0453-x
  • Ekyune K, Lee Y, Lee H, et al. Implication of mouse Vps26b–Vps29–Vps35 retromer complex in sortilin trafficking. Biochem Biophys Res Commun. 2010. doi:10.1016/j.bbrc.2010.10.121
  • Filippone A, Li JG, Pratico’ D. VPS35 downregulation alters degradation pathways in neuronal cells. J Alzheimers Dis. 2021;84(3):1079–1089. doi:10.3233/JAD-210701
  • Yoshii SR, Mizushima N. Monitoring and measuring autophagy. Int J Mol Sci. 2017;18(9):1865. doi:10.3390/ijms18091865
  • Fuse A, Furuya N, Kakuta S, et al. VPS29-VPS35 intermediate of retromer is stable and may be involved in the retromer complex assembly process. FEBS Lett. 2015;589:1430–1436. doi:10.1016/j.febslet.2015.04.040
  • Pekol T, Daniels JS, Labutti J, et al. Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab Dispos. 2005;33(6):771–777. doi:10.1124/dmd.104.002956
  • Colacurcio DJ, Nixon RA. Disorders of lysosomal acidification. The emerging role of v-ATPase in aging and neurodegenerative disease. Ageing Res Rev. 2016;32:75–88. doi:10.1016/j.arr.2016.05.004
  • Yamamoto A, Tagawa Y, Yoshimori T, et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct. 1998;23:33–42. doi:10.1247/csf.23.33
  • Polanco JC, Hand GR, Briner A, et al. Exosomes induce endolysosomal permeabilization as a gateway by which exosomal tau seeds escape into the cytosol. Acta Neuropathol. 2021;141(2):235–256. doi:10.1007/s00401-020-02254-3
  • Maruzs T, Lőrincz P, Szatmári Z, et al. Retromer ensures the degradation of autophagic cargo by maintaining lysosome function in drosophila. Traffic. 2015;16(10):1088–1107. doi:10.1111/tra.12309
  • Lőrincz P, Lakatos Z, Maruzs T, et al. Atg6/UVRAG/Vps34-containing lipid kinase complex is required for receptor downregulation through endolysosomal degradation and epithelial polarity during drosophila wing development. BioMed Res Int. 2014;2014:851349. doi:10.1155/2014/851349
  • Falk MM, Fong JT, Kells RM, et al. Degradation of endocytosed gap junctions by autophagosomal and endo-/lysosomal pathways: a perspective. J Membr Biol. 2012;245(8):465–476. doi:10.1007/s00232-012-9464-0
  • Zhao YG, Codogno P, Zhang H. Machinery, regulation and pathophysiological implications of autophagosome maturation. Nat Rev Mol Cell Biol. 2021;1–18. doi:10.1038/s41580-021-00392-4
  • Weksler BB, Subileau EA, Perriere N, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–1874. doi:10.1096/fj.04-3458fje
  • Predescu SA, Predescu DN, Malik AB. Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol. 2007;293:L823–L842. pmid: 17644753. doi:10.1152/ajplung.00436.2006
  • Sager KL, Wuu J, Herskowitz JH, et al. Neuronal LR11 expression does not differentiate between clinically defined Alzheimer’s disease and control brains. PLoS One. 2012;7(8):e40527. doi:10.1371/journal.pone.0040527
  • Li Y, Rowland C, Catanese J, et al. SORL1 variants and risk of late-onset Alzheimer’s disease. Neurobiol Dis. 2008;29(2):293–296. doi:10.1016/j.nbd.2007.09.001
  • Chung KM, Hernández N, Sproul AA, Yu WH. Alzheimer’s disease and the autophagic-lysosomal system. Neurosci Lett. 2019;697:49–58. doi:10.1016/j.neulet.2018.05.017
  • Hartz A, Zhong Y, Wolf A, et al. Aβ40 reduces P-glycoprotein at the blood–brain barrier through the ubiquitin–proteasome pathway. J Neurosci. 2016;36(6):1930–1941. doi:10.1523/JNEUROSCI.0350-15.2016
  • Jucker M, Walker L. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature. 2013;501(7465):45–51. doi:10.1038/nature12481
  • Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2021;17(1):1–382.
  • Carosi JM, Hein L, Hurk M, et al. Retromer regulates the lysosomal clearance of MAPT/tau. Autophagy. 2020. doi:10.1080/15548627.2020.1821545
  • Chen X, Kordich J, Williams E, et al. Parkinson’s disease-linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proc Natl Acad Sci USA. 2019;116(12):5765–5774. doi:10.1073/pnas.1814909116
  • Gao L, Xiao H, Ai L, et al. Vps35 deficiency impairs cdk5/p35 degradation and promotes the hyperphosphorylation of tau protein in retinal ganglion cells. Invest Ophthalmol Vis Sci. 2020;61(1):1. doi:10.1167/iovs.61.1.1
  • Vitale F, Giliberto L, Ruiz S, et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun. 2018;6(1):82. doi:10.1186/s40478-018-0585-2
  • Inoue Y, Ando Y, Misumi Y, Ueda M. Current management and therapeutic strategies for cerebral amyloid angiopathy. Int J Mol Sci. 2021;22(8):3869. doi:10.3390/ijms22083869