177
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Improving Diagnosis and Clinical Management of Acquired Systemic Autoinflammatory Diseases

, & ORCID Icon
Pages 5739-5755 | Received 14 Jun 2022, Accepted 18 Aug 2022, Published online: 10 Oct 2022

References

  • Savic S, Caseley EA, McDermott MF. Moving towards a systems-based classification of innate immune-mediated diseases. Nat Rev Rheumatol. 2020;16(4):222–237. doi:10.1038/s41584-020-0377-5
  • Harrison SR, McGonagle D, Nizam S, et al. Anakinra as a diagnostic challenge and treatment option for systemic autoinflammatory disorders of undefined etiology. JCI Insight. 2016;1(6):86336. doi:10.1172/jci.insight.86336
  • Beck DB, Ferrada MA, Sikora KA, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020;383(27):2628–2638. doi:10.1056/NEJMoa2026834
  • Rowczenio DM, Gomes SM, Aróstegui JI, et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol. 2017;8:1410. doi:10.3389/fimmu.2017.01410
  • Romano M, Arici ZS, Piskin D, et al. The 2021 EULAR/American College of Rheumatology points to consider for diagnosis, management and monitoring of the interleukin-1 mediated autoinflammatory diseases: cryopyrin-associated periodic syndromes, tumour necrosis factor receptor-associated periodic syndrome, mevalonate kinase deficiency, and deficiency of the interleukin-1 receptor antagonist. Ann Rheum Dis. 2022;81(7):907–921. doi:10.1136/annrheumdis-2021-221801
  • Bauer R, Rauch I. The NAIP/NLRC4 inflammasome in infection and pathology. Mol Aspects Med. 2020;76:100863. doi:10.1016/j.mam.2020.100863
  • Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46(10):1135. doi:10.1038/ng.3066
  • Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211(12):2385. doi:10.1084/jem.20141091
  • Canna SW, De Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140. doi:10.1038/ng.3089
  • Liang J, Alfano DN, Squires JE, et al. Novel NLRC4 mutation causes a syndrome of perinatal autoinflammation with hemophagocytic lymphohistiocytosis, hepatosplenomegaly, fetal thrombotic vasculopathy, and congenital anemia and ascites. Pediatr Dev Pathol. 2017;20(6):498–505. doi:10.1177/1093526616686890
  • Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell–based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–459. doi:10.1002/art.39960
  • Wang J, Ye Q, Zheng W, et al. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease. Ann Rheum Dis. 2022;2022:annrheumdis-2021-221708.
  • Ionescu D, Peñín-Franch A, Mensa-Vilaró A, et al. First description of late-onset autoinflammatory disease due to somatic NLRC4 mosaicism. Arthritis Rheumatol. 2022;74(4):692–699. doi:10.1002/art.41999
  • Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and “prionoid” activities that propagate inflammation. Nat Immunol. 2014;15(8):727–737. doi:10.1038/ni.2913
  • Baroja-Mazo A, Martín-Sánchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–748. doi:10.1038/ni.2919
  • Rowczenio DM, Pathak S, Arostegui JI, et al. Molecular genetic investigation, clinical features, and response to treatment in 21 patients with Schnitzler syndrome. Blood. 2018;131(9):974–981. doi:10.1182/blood-2017-10-810366
  • Louvrier C, Assrawi E, El Khouri E, et al. NLRP3-associated autoinflammatory diseases: phenotypic and molecular characteristics of germline versus somatic mutations. J Allergy Clin Immunol. 2020;145(4):1254–1261. doi:10.1016/j.jaci.2019.11.035
  • Cantarini L, Rigante D, Merlini G, et al. The expanding spectrum of low-penetrance TNFRSF1A gene variants in adults presenting with recurrent inflammatory attacks: clinical manifestations and long-term follow-up. Semin Arthritis Rheum. 2014;43(6):818–823. doi:10.1016/j.semarthrit.2013.12.002
  • Rowczenio DM, Trojer H, Omoyinmi E, et al. Brief report: association of tumor necrosis factor receptor-associated periodic syndrome with gonosomal mosaicism of a novel 24-nucleotide TNFRSF1A deletion. Arthritis Rheumatol. 2016;68(8):2044–2049. doi:10.1002/art.39683
  • Kontzias A, Zarabi SK, Calabrese C, et al. Somatic mosaicism in adult‐onset TNF receptor‐associated periodic syndrome (TRAPS). Mol Genet Genomic Med. 2019;7(8). doi:10.1002/mgg3.791
  • Mensa-Vilaro A, Teresa Bosque M, Magri G, et al. Brief report: late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 2016;68(12):3035–3041. doi:10.1002/art.39770
  • Simon A, Asli B, Braun-Falco M, et al. Schnitzler’s syndrome: diagnosis, treatment, and follow-up. Allergy Eur J Allergy Clin Immunol. 2013;68(5):562–568. doi:10.1111/all.12129
  • De Koning HD. Schnitzler’s syndrome: lessons from 281 cases. Clin Transl Allergy. 2014;4(1):1–15. doi:10.1186/2045-7022-4-41
  • Pathak S, Rowczenio DM, Owen RG, et al. Exploratory study of MYD88 L265P, rare NLRP3 variants, and clonal hematopoiesis prevalence in patients with schnitzler syndrome. Arthritis Rheumatol. 2019;71(12):2121–2125. doi:10.1002/art.41030
  • Louvrier C, Awad F, Amselem S, Lipsker D, Giurgea I. Absence of NLRP3 somatic mutations and VEXAS-related UBA1 mutations in a large cohort of patients with Schnitzler syndrome. Allergy. 2022. doi:10.1111/all.15411
  • Varettoni M, Arcaini L, Zibellini S, et al. Prevalence and clinical significance of the MYD88 (L265P) somatic mutation in Waldenström’s macroglobulinemia and related lymphoid neoplasms. Blood. 2013;121(13):2522–2528. doi:10.1182/blood-2012-09-457101
  • Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature. 2011;470(7332):115–121. doi:10.1038/nature09671
  • Warner N, Núñez G. MyD88: a critical adaptor protein in innate immunity signal transduction. J Immunol. 2013;190(1):3–4. doi:10.4049/jimmunol.1203103
  • Sano S, Oshima K, Wang Y, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71(8):875–886. doi:10.1016/j.jacc.2017.12.037
  • Basiorka AAA, McGraw KLL, Abbas-Aghababazadeh F, et al. Assessment of ASC specks as a putative biomarker of pyroptosis in myelodysplastic syndromes: an observational cohort study. Lancet Haematol. 2018;5(9):e393–402. doi:10.1016/S2352-3026(18)30109-1
  • Basiorka AA, McGraw KL, Eksioglu EA, et al. The NLRP3 inflammasome functions as a driver of the myelodysplastic syndrome phenotype. Blood. 2016;128(25):2960–2975. doi:10.1182/blood-2016-07-730556
  • Claves F, Siest R, Lefebvre C, Valmary-Degano S, Carras S. Dramatic efficacy of ibrutinib in a Schnitzler syndrome case with indolent lymphoma. J Clin Immunol. 2021;41(6):1380–1383. doi:10.1007/s10875-021-01038-y
  • Paladini A, Vitale A, Frediani B, Cantarini L. Resolution of Schnitzler’s syndrome after haematopoietic stem cell transplantation. Clin Exp Rheumatol. 2021;39:704. doi:10.55563/clinexprheumatol/1r3i7i
  • Betrains A, Staels F, Vanderschueren S. Efficacy and safety of canakinumab treatment in schnitzler syndrome: a systematic literature review. Semin Arthritis Rheum. 2020;50(4):636–642. doi:10.1016/j.semarthrit.2020.05.002
  • Bonnekoh H, Frischbutter S, Roll S, Maurer M, Krause K. Tocilizumab treatment in patients with Schnitzler syndrome: an open-label study. J Allergy Clin Immunol Pract. 2021;9(6):2486–2489.e4. doi:10.1016/j.jaip.2021.01.024
  • Yan R, Cao W, Liu X, Li F, Shen M. A Chinese case series of Schnitzler syndrome and complete remission in one tocilizumab-treated patient. Clin Rheumatol. 2020;39(12):3847–3852. doi:10.1007/s10067-020-05204-2
  • Huang Y, Wang Y, Yu F, et al. Case report: therapeutic use of ibrutinib in a patient with Schnitzler syndrome. Front Immunol. 2022;13:1–4.
  • Nigrovic PA, Schneider R. Systemic juvenile idiopathic arthritis and adult onset Still disease. In: Hashkes PJ, Laxer RM, Simon A, editors. Textbook of Autoinflammation. Cham, Switzerland: Springer Nature Switzerland AG; 2019:587–616.
  • Sfriso P, Priori R, Valesini G, et al. Adult-onset Still’s disease: an Italian multicentre retrospective observational study of manifestations and treatments in 245 patients. Clin Rheumatol. 2016;35(7):1683–1689. doi:10.1007/s10067-016-3308-8
  • Wakai K, Ohta A, Tamakoshi A, et al. Estimated prevalence and incidence of adult Still’s disease: findings by a nationwide epidemiological survey in Japan. J Epidemiol. 1997;7(4):221–225. doi:10.2188/jea.7.221
  • Magadur-Joly G, Billaud E, Barrier JH, et al. Epidemiology of adult Still’s disease: estimate of the incidence by a retrospective study in west France. Ann Rheum Dis. 1995;54(7):587. doi:10.1136/ard.54.7.587
  • Bogdan M, Nitsch-Osuch A, Samel-Kowalik P, Goryński P, Tyszko P, Kanecki K. Adult-onset Still’s disease in Poland - a nationwide population-based study. Ann Agric Environ Med. 2021;28(2):250–254. doi:10.26444/aaem/132451
  • Evensen KJ, Nossent HC. Epidemiology and outcome of adult-onset Still’s disease in Northern Norway. Scand J Rheumatol. 2006;35(1):48–51. doi:10.1080/03009740510026616
  • Hocevar A, Rotar Z, Krosel M, Novljan MP, Praprotnik S, Tomsic M. SAT0524 the incidence rate of adult onset Still’s disease in Slovenia. Ann Rheum Dis. 2020;79(Suppl 1):1218–1219. doi:10.1136/annrheumdis-2020-eular.1738
  • Balci MA, Pamuk ON, Pamuk GE, Uzundere FK, Donmez S. AB1142 epidemiology and outcome of adult-onset still’s disease in Northwestern Thrace Region in Turkey. Ann Rheum Dis. 2015;74(Suppl 2):1284. doi:10.1136/annrheumdis-2015-eular.1929
  • Mehta BY, Ibrahim S, Briggs W, Efthimiou P. Racial/ethnic variations in morbidity and mortality in adult onset Still’s disease: an analysis of national dataset. Semin Arthritis Rheum. 2019;49(3):469–473. doi:10.1016/j.semarthrit.2019.04.004
  • Giacomelli R, Ruscitti P, Shoenfeld Y. A comprehensive review on adult onset Still’s disease. J Autoimmun. 2018;(93):24–36. doi:10.1016/j.jaut.2018.07.018
  • Mitrovic S, Fautrel B. Clinical phenotypes of adult-onset Still’s disease: new insights from pathophysiology and literature findings. J Clin Med. 2021;10(12):2633. doi:10.3390/jcm10122633
  • Inoue N, Shimizu M, Tsunoda S, Kawano M, Matsumura M, Yachie A. Cytokine profile in adult-onset Still’s disease: comparison with systemic juvenile idiopathic arthritis. Clin Immunol. 2016;169:8–13. doi:10.1016/j.clim.2016.05.010
  • Jamilloux Y, Gerfaud-Valentin M, Martinon F, Belot A, Henry T, Sève P. Pathogenesis of adult-onset Still’s disease: new insights from the juvenile counterpart. Immunol Res. 2014;61(1):53–62. doi:10.1007/s12026-014-8561-9
  • Berardicurti O, Conforti A, Iacono D, et al. Dissecting the clinical heterogeneity of adult-onset Still’s disease: results from a multi-dimensional characterization and stratification. Rheumatology. 2021;60(10):4844–4849. doi:10.1093/rheumatology/keaa904
  • Kishida D, Ichikawa T, Takamatsu R, et al. Clinical characteristics and treatment of elderly onset adult-onset Still’s disease. Sci Rep. 2022;12(1):1–7.
  • Di Cola I, Di Muzio C, Conforti A, et al. Adult-onset Still’s disease with elderly onset, results from a multicentre study. Clin Exp Rheumatol. 2022. doi:10.55563/clinexprheumatol/0215kv
  • Colafrancesco S, Priori R, Valesini G. Presentation and diagnosis of adult-onset Still’s disease: the implications of current and emerging markers in overcoming the diagnostic challenge. Expert Rev Clin Immunol. 2015;11(6):749–761. doi:10.1586/1744666X.2015.1037287
  • Mitrovic S, Fautrel B. New markers for adult-onset Still’s disease. Jt Bone Spine. 2018;85(3):285–293. doi:10.1016/j.jbspin.2017.05.011
  • Zhou X, Li Y, Wang Q. FDG PET/CT used in identifying adult-onset Still’s disease in connective tissue diseases. Clin Rheumatol. 2020;39(9):2735–2742. doi:10.1007/s10067-020-05041-3
  • Hofheinz K, Schett G, Manger B. Adult onset Still’s disease associated with malignancy-cause or coincidence? Semin Arthritis Rheum. 2016;45(5):621–626. doi:10.1016/j.semarthrit.2015.10.003
  • Fautrel B, Zing E, Golmard JL, et al. Proposal for a new set of classification criteria for adult-onset still disease. Medicine. 2002;81(3):194–200. doi:10.1097/00005792-200205000-00003
  • Lebrun D, Mestrallet S, Dehoux M, et al. Validation of the Fautrel classification criteria for adult-onset Still’s disease. Semin Arthritis Rheum. 2018;47(4):578–585. doi:10.1016/j.semarthrit.2017.07.005
  • Gaggiano C, Rigante D, Vitale A, et al. Hints for genetic and clinical differentiation of adult-onset monogenic autoinflammatory diseases. Mediators Inflamm. 2019;2019:1–29. doi:10.1155/2019/3293145
  • Li H, Abramova I, Chesoni S, Yao Q. Molecular genetic analysis for periodic fever syndromes: a supplemental role for the diagnosis of adult-onset Still’s disease. Clin Rheumatol. 2018;37(8):2021–2026. doi:10.1007/s10067-018-4178-z
  • Ombrello MJ, Remmers EF, Tachmazidou I, et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc Natl Acad Sci U S A. 2015;112(52):15970–15975. doi:10.1073/pnas.1520779112
  • Teng J, Chen X, Chen J, et al. The amino acid variants in HLA II molecules explain the major association with adult-onset Still’s disease in the Han Chinese population. J Autoimmun. 2021;116:102562. doi:10.1016/j.jaut.2020.102562
  • Terkeltaub R, Esdaile JM, Décary F, Harth M, Lister J, Lapointe N. HLA-Bw35 and prognosis in adult Still’s disease. Arthritis Rheum. 1981;24(12):1469–1472. doi:10.1002/art.1780241203
  • Wouters JM, Reekers P, Van De Putte LB, et al. Adult-onset still’s disease. Disease course and HLA associations. Arthritis Rheum. 1986;29(3):415–418. doi:10.1002/art.1780290316
  • Fujii T, Nojima T, Yasuoka H, et al. Cytokine and immunogenetic profiles in Japanese patients with adult Still’s disease. Association with chronic articular disease. Rheumatology. 2001;40(12):1398–1404. doi:10.1093/rheumatology/40.12.1398
  • Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J. Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med. 2005;201(9):1479. doi:10.1084/jem.20050473
  • Colafrancesco S, Priori R, Alessandri C, et al. IL-18 serum level in adult onset Still’s disease: a marker of disease activity. Int J Inflam. 2012;2012. doi:10.1155/2012/156890
  • Choi J-H, Suh C-H, Lee Y-M, et al. Serum cytokine profiles in patients with adult onset Still’s disease. J Rheumatol. 2003;30:11.
  • Chen D-Y, Lan J-L, Lin F-J, Hsieh T-Y. Proinflammatory cytokine profiles in sera and pathological tissues of patients with active untreated adult onset Still’s disease. J Rheumatol. 2004;31(11):2189–2198.
  • Frediani B, Millucci L, Bernardini G, et al. SAT0621 Clinical significance of interleukin-18 and interleukin −6 on disease course of adult-onset still’s disease. Ann Rheum Dis. 2018;77(Suppl 2):1162.
  • Ma Y, Wang M, Jia J, et al. Enhanced type I interferon signature induces neutrophil extracellular traps enriched in mitochondrial DNA in adult-onset Still’s disease. J Autoimmun. 2022;127:102793. doi:10.1016/j.jaut.2022.102793
  • Nyström S, Antoine DJ, Lundbäck P, et al. TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO J. 2013;32(1):86. doi:10.1038/emboj.2012.328
  • Gurung P, Subbarao Malireddi RK, Anand PK, et al. Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem. 2012;287(41):34474–34483. doi:10.1074/jbc.M112.401406
  • Kim JW, Ahn MH, Jung JY, Suh CH, Kim HA. An update on the pathogenic role of neutrophils in systemic juvenile idiopathic arthritis and adult-onset Still’s disease. Int J Mol Sci. 2021;22(23):13038. doi:10.3390/ijms222313038
  • Austermann J, Spiekermann C, Roth J. S100 proteins in rheumatic diseases. Nat Rev Rheumatol. 2018;14(9):528–541. doi:10.1038/s41584-018-0058-9
  • Sprenkeler EGG, Zandstra J, Van Kleef ND, et al. S100A8/A9 is a marker for the release of neutrophil extracellular traps and induces neutrophil activation. Cells. 2022;11(2):236. doi:10.3390/cells11020236
  • Frosch M, Ahlmann M, Vogl T, et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1beta form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(3):883–891. doi:10.1002/art.24349
  • Holzinger D, Foell D, Kessel C. The role of S100 proteins in the pathogenesis and monitoring of autoinflammatory diseases. Mol Cell Pediatr. 2018;5(1). doi:10.1186/s40348-018-0085-2
  • Holzinger D, Frosch M, Kastrup A, et al. The Toll-like receptor 4 agonist MRP8/14 protein complex is a sensitive indicator for disease activity and predicts relapses in systemic-onset juvenile idiopathic arthritis. Ann Rheum Dis. 2012;71(6):974–980. doi:10.1136/annrheumdis-2011-200598
  • Aljaberi N, Tronconi E, Schulert G, et al. The use of S100 proteins testing in juvenile idiopathic arthritis and autoinflammatory diseases in a pediatric clinical setting: a retrospective analysis. Pediatr Rheumatol Online J. 2020;18(1). doi:10.1186/s12969-020-0398-2
  • Kim HA, An JM, Nam JY, Jeon JAY, Suh CH. Serum S100A8/A9, but not follistatin-like protein 1 and interleukin 18, may be a useful biomarker of disease activity in adult-onset Still’s disease. J Rheumatol. 2012;39(7):1399–1406. doi:10.3899/jrheum.120079
  • Kim HA, Han JH, Kim WJ, et al. TLR4 endogenous ligand S100A8/A9 levels in adult-onset Still’s disease and their association with disease activity and clinical manifestations. Int J Mol Sci. 2016;17(8):1342. doi:10.3390/ijms17081342
  • Wittkowski H, Frosch M, Wulffraat N, et al. S100A12 is a novel molecular marker differentiating systemic-onset juvenile idiopathic arthritis from other causes of fever of unknown origin. Arthritis Rheum. 2008;58(12):3924–3931. doi:10.1002/art.24137
  • Bae CB, Suh CH, An JM, et al. Serum S100A12 may be a useful biomarker of disease activity in adult-onset Still’s disease. J Rheumatol. 2014;41(12):2403–2408. doi:10.3899/jrheum.140651
  • Hu Q, Wang M, Jia J, et al. Tofacitinib in refractory adult-onset Still’s disease: 14 cases from a single centre in China. Ann Rheum Dis. 2020;79(6):842–844. doi:10.1136/annrheumdis-2019-216699
  • Ladhari C, Jorgensen C, Pers YM. Treatment of refractory adult onset Still’s disease with combination anakinra and baricitinib therapy. Rheumatology. 2019;58(4):736–737. doi:10.1093/rheumatology/key414
  • Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi:10.3389/fimmu.2019.00119
  • Eloseily EM, Cron RQ. Macrophage activation syndrome. Microbiome Rheum Dis Infect. 2018;151:927–941.
  • Di Cola I, Ruscitti P, Giacomelli R, Cipriani P. The pathogenic role of interferons in the hyperinflammatory response on adult-onset Still’s disease and macrophage activation syndrome: paving the way towards new therapeutic targets. J Clin Med. 2021;10(6):1–12. doi:10.3390/jcm10061164
  • Chaturvedi VV, Marsh RA, Zoref-Lorenz A, et al. T-cell activation profiles distinguish hemophagocytic lymphohistiocytosis and early sepsis. Blood. 2021;137(17):2337–2346. doi:10.1182/blood.2020009499
  • Grom AA, Bachir J, Asnaghi V, De Benedetti F. Trials in progress: a two-cohort, open-label, single-arm study of emapalumab, an anti-interferon gamma (IFNγ) monoclonal antibody, in patients with macrophage activation syndrome (MAS) in rheumatic diseases. Blood. 2021;138(Supplement 1):4195. doi:10.1182/blood-2021-146770
  • Locatelli F, Jordan MB, Allen C, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N Engl J Med. 2020;382(19):1811–1822. doi:10.1056/NEJMoa1911326
  • Sawhney S, Woo P, Murray KJ. Macrophage activation syndrome: a potentially fatal complication of rheumatic disorders. Arch Dis Child. 2001;85(5):421–426. doi:10.1136/adc.85.5.421
  • Moradinejad MH, Ziaee V. The incidence of macrophage activation syndrome in children with rheumatic disorders. Minerva Pediatr. 2011;63(6):459–466.
  • Fukaya S, Yasuda S, Hashimoto T, et al. Clinical features of haemophagocytic syndrome in patients with systemic autoimmune diseases: analysis of 30 cases. Rheumatology. 2008;47(11):1686–1691. doi:10.1093/rheumatology/ken342
  • Mitrovic S, Fautrel B. Complications of adult-onset Still’s disease and their management. Expert Rev Clin Immunol. 2018;14(5):351–365. doi:10.1080/1744666X.2018.1465821
  • Behrens EM, Beukelman T, Paessler M, Cron RQ. Occult macrophage activation syndrome in patients with systemic juvenile idiopathic arthritis. J Rheumatol. 2007;34(5):1133–1138.
  • Shimizu M, Yokoyama T, Yamada K, et al. Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis. Rheumatology. 2010;49(9):1645–1653. doi:10.1093/rheumatology/keq133
  • Mizuta M, Shimizu M, Inoue N, et al. Clinical significance of interleukin-18 for the diagnosis and prediction of disease course in systemic juvenile idiopathic arthritis. Rheumatology. 2021;60(5):2421–2426. doi:10.1093/rheumatology/keaa634
  • Shiga T, Nozaki Y, Tomita D, et al. Usefulness of interleukin-18 as a diagnostic biomarker to differentiate adult-onset Still’s disease with/without macrophage activation syndrome from other secondary hemophagocytic lymphohistiocytosis in adults. Front Immunol. 2021;12:1. doi:10.3389/fimmu.2021.750114
  • Saper VE, Chen G, Deutsch GH, et al. Emergent high fatality lung disease in systemic juvenile arthritis. Ann Rheum Dis. 2019;78(12):1722. doi:10.1136/annrheumdis-2019-216040
  • Schulert GS, Yasin S, Carey B, et al. Systemic juvenile idiopathic arthritis-associated lung disease: characterization and risk factors. Arthritis Rheumatol. 2019;71(11):1943–1954. doi:10.1002/art.41073
  • Ruscitti P, Berardicurti O, Iacono D, et al. Parenchymal lung disease in adult onset Still’s disease: an emergent marker of disease severity—characterisation and predictive factors from Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale (GIRRCS) cohort of patients. Arthritis Res Ther. 2020;22(1). doi:10.1186/s13075-020-02245-5
  • Fajgenbaum DC, June CH. Cytokine Storm. The New England Journal of Medicine. 2020;383(23):2255–2273. doi:10.1056/NEJMra2026131
  • Reiff DD, Cron RQ. Performance of cytokine storm syndrome scoring systems in pediatric COVID-19 and multisystem inflammatory syndrome in children. ACR Open Rheumatol. 2021;3(12):820–826. doi:10.1002/acr2.11331
  • Colina M, Zucchini W, Ciancio G, Orzincolo C, Trotta F, Govoni M. The evolution of adult-onset Still disease: an observational and comparative study in a cohort of 76 Italian patients. Semin Arthritis Rheum. 2011;41(2):279–285. doi:10.1016/j.semarthrit.2010.12.006
  • Kong XD, Xu D, Zhang W, Zhao Y, Zeng X, Zhang F. Clinical features and prognosis in adult-onset Still’s disease: a study of 104 cases. Clin Rheumatol. 2010;29(9):1015–1019. doi:10.1007/s10067-010-1516-1
  • Fautrel B, Borget C, Rozenberg S, et al. Corticosteroid sparing effect of low dose methotrexate treatment in adult Still’s disease. J Rheumatol. 1999;26(2):373–378.
  • Jamilloux Y, Gerfaud-Valentin M, Henry T, Sève P. Treatment of adult-onset Still’s disease: a review. Ther Clin Risk Manag. 2015;11:33. doi:10.2147/TCRM.S64951
  • Colafrancesco S, Priori R, Valesini G, et al. Response to interleukin-1 inhibitors in 140 Italian patients with adult-onset Still’s disease: a multicentre retrospective observational study. Front Pharmacol. 2017;8. doi:10.3389/fphar.2017.00369
  • Ortiz-Sanjuán F, Blanco R, Calvo-Rio V, et al. Efficacy of tocilizumab in conventional treatment-refractory adult-onset Still’s disease: multicenter retrospective open-label study of thirty-four patients. Arthritis Rheumatol. 2014;66(6):1659–1665. doi:10.1002/art.38398
  • Laskari K, Tektonidou PMG, Katsiari PC, et al. Outcome of refractory to conventional and/or biologic treatment adult Still’s disease following canakinumab treatment: countrywide data in 50 patients. Semin Arthritis Rheum. 2021;51(1):137–143. doi:10.1016/j.semarthrit.2020.10.011
  • Kedor C, Listing J, Zernicke J, et al. Canakinumab for treatment of adult-onset Still’s disease to achieve reduction of arthritic manifestation (CONSIDER): phase II, randomised, double-blind, placebo-controlled, multicentre, investigator-initiated trial. Ann Rheum Dis. 2020;79(8):1090–1097. doi:10.1136/annrheumdis-2020-217155
  • Gabay C, Fautrel B, Rech J, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Ann Rheum Dis. 2018;77(6):840–847. doi:10.1136/annrheumdis-2017-212608
  • Moudry P, Lukas C, Macurek L, et al. Ubiquitin-activating enzyme UBA1 is required for cellular response to DNA damage. Cell Cycle. 2012;11(8):1573–1582. doi:10.4161/cc.19978
  • Bourbon E, Heiblig M, Gerfaud Valentin M, et al. Therapeutic options in VEXAS syndrome: insights from a retrospective series. Blood. 2021;137(26):3682–3684. doi:10.1182/blood.2020010177
  • Poulter JA, Collins JC, Cargo C, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021;137(26):3676–3681. doi:10.1182/blood.2020010286
  • Grayson PC, Patel BA, Young NS. VEXAS syndrome. Blood. 2021;137(26):3591–3594. doi:10.1182/blood.2021011455
  • Grey A, Cheong PL, Lee FJ, et al. A case of VEXAS syndrome complicated by hemophagocytic lymphohistiocytosis. J Clin Immunol. 2021;41(7):1648–1651. doi:10.1007/s10875-021-01070-y
  • Cordts I, Hecker JS, Gauck D, et al. Successful treatment with azacitidine in VEXAS syndrome with prominent myofasciitis. Rheumatology. 2021;61(5):e117–9. doi:10.1093/rheumatology/keab866
  • Muratore F, Marvisi C, Castrignanò P, et al. VEXAS syndrome: a case series from a single-center cohort of Italian patients with vasculitis. Arthritis Rheumatol. 2022;74(4):665–670. doi:10.1002/art.41992
  • Ferrada MA, Sikora KA, Luo Y, et al. Somatic mutations in UBA1 define a distinct subset of relapsing polychondritis patients with VEXAS. Arthritis Rheumatol. 2021;73(10):1886–1895. doi:10.1002/art.41743
  • Lazarchick J. Update on anemia and neutropenia in copper deficiency. Curr Opin Hematol. 2012;19(1):58–60. doi:10.1097/MOH.0b013e32834da9d2
  • Houwerzijl EJ, Pol HWD, Blom NR, van der Want JJL, de Wolf JTM, Vellenga E. Erythroid precursors from patients with low-risk myelodysplasia demonstrate ultrastructural features of enhanced autophagy of mitochondria. Leukemia. 2009;23(5):886–891. doi:10.1038/leu.2008.389
  • Gurnari C, Pagliuca S, Durkin L, et al. Vacuolization of hematopoietic precursors: an enigma with multiple etiologies. Blood. 2021;137(26):3685–3689. doi:10.1182/blood.2021010811
  • Fraison JB, Mekinian A, Grignano E, et al.Efficacy of Azacitidine in autoimmune and inflammatory disorders associated with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res. 2016;(43):13–17. doi:10.1016/j.leukres.2016.02.005
  • Diarra A, Duployez N, Fournier E, et al. Successful allogeneic hematopoietic stem cell transplantation in patients with VEXAS syndrome: a 2-center experience. Blood Adv. 2022;6(3):998–1003. doi:10.1182/bloodadvances.2021004749
  • Oganesyan A, Hakobyan Y, Terrier B, Georgin-Lavialle S, Mekinian A. Looking beyond VEXAS: coexistence of undifferentiated systemic autoinflammatory disease and myelodysplastic syndrome. Semin Hematol. 2021;58(4):247–253. doi:10.1053/j.seminhematol.2021.10.003
  • Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–3627. doi:10.1182/blood-2013-08-518886
  • Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi:10.1182/blood-2016-03-643544
  • Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J. 2021;11(9). doi:10.1038/s41408-021-00547-8
  • Higa KC, Goodspeed A, Chavez JS, et al. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J Exp Med. 2021;218(6). doi:10.1084/jem.20200560
  • Watad A, Kacar M, Bragazzi NL, et al. Somatic mutations and the risk of undifferentiated autoinflammatory disease in MDS: an under-recognized but prognostically important complication. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.610019
  • Mekinian A, Grignano E, Braun T, et al. Systemic inflammatory and autoimmune manifestations associated with myelodysplastic syndromes and chronic myelomonocytic leukaemia: a French multicentre retrospective study. Rheumatology. 2015;55(2):291–300. doi:10.1093/rheumatology/kev294
  • Kook MH, Yhim HY, Lee NR, et al. Successful treatment of myelodysplastic syndrome and Behcet colitis after allogeneic hematopoietic stem cell transplantation. Korean J Intern Med. 2014;29(1):123. doi:10.3904/kjim.2014.29.1.123
  • Simonetta F, Guerne PA, Tirefort Y, Masouridi-Levrat S, Roosnek E, Chalandon Y. Complete and sustained remission of spondyloarthritis after allogeneic hematopoietic stem cell transplantation for myelodysplastic syndrome. J Bone Spine. 2015;82(3):216–217. doi:10.1016/j.jbspin.2014.10.011
  • Alix L, Néel A, Cador B, et al. Diagnostic value of 18-F fluorodeoxyglucose PET/CT and bone scan in Schnitzler syndrome. Autoimmunity. 2019;52(7–8):264–271. doi:10.1080/08916934.2019.1680649
  • Darrieutort-Laffite C, Ansquer C, Aubert H, et al. Rheumatic involvement and bone scan features in Schnitzler syndrome: initial and follow-up data from a single-center cohort of 25 patients. Arthritis Res Ther. 2020;22(1):1–10. doi:10.1186/s13075-020-02318-5
  • Sutera D, Bustaffa M, Papa R, et al. Clinical characterization, long-term follow-up, and response to treatment of patients with syndrome of undifferentiated recurrent fever (SURF). Semin Arthritis Rheum. 2022;55:152024. doi:10.1016/j.semarthrit.2022.152024
  • Hadjadj J, Frémond ML, Neven B. Emerging place of JAK inhibitors in the treatment of inborn errors of immunity. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.717388
  • Heiblig M, Ferrada MA, Koster MJ, et al. Ruxolitinib is more effective than other JAK inhibitors to treat VEXAS syndrome: a retrospective multi center study. Blood. 2022. doi:10.1182/blood.2022016642
  • Comont T, Heiblig M, Rivière E, et al. Azacitidine for patients with Vacuoles, E1 Enzyme, X-linked, Autoinflammatory, Somatic syndrome (VEXAS) and myelodysplastic syndrome: data from the French VEXAS registry. Br J Haematol. 2022;196(4):969–974. doi:10.1111/bjh.17893
  • Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139(5):1698–1701. doi:10.1016/j.jaci.2016.10.022
  • Booshehri LM, Hoffman HM. CAPS and NLRP3. J Clin Immunol. 2019;15;39(3):277–86.
  • Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. 2004;20(3):319–25. doi: 10.1016/s1074-7613(04)00046-9
  • Koné-Paut I, Galeotti C. Anakinra for cryopyrin-associated periodic syndrome. Expert Rev Clin Immunol. 2014;10(1):7–18.
  • Kieffer C, Cribier B, Lipsker D. Neutrophilic urticarial dermatosis: a variant of neutrophilic urticaria strongly associated with systemic disease. Report of 9 new cases and review of the literature. Medicine (Baltimore). 2009;88(1):23–31.
  • Poulter JA, Savic S. Genetics of somatic auto-inflammatory disorders. Semin Hematol. 2021;58(4):212–217.
  • Zhou Q, Aksentijevich I, Wood GM, Walts AD, Hoffmann P, Remmers EF, et al. Brief Report: Cryopyrin-Associated Periodic Syndrome Caused by a Myeloid-Restricted Somatic NLRP3 Mutation. Arthritis Rheumatol (Hoboken, NJ). 2015;67(9):2482–2486.
  • Stackowicz J, Gaudenzio N, Serhan N, Conde E, Godon O, Marichal T, et al. Neutrophil-specific gain-of-function mutations in Nlrp3 promote development of cryopyrin-associated periodic syndrome. J Exp Med. 2021 Sep 3;218(10).