346
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Docking Study, Synthesis, and Anti-Inflammatory Potential of Some New Pyridopyrimidine-Derived Compounds

ORCID Icon, , ORCID Icon, , , , ORCID Icon & show all
Pages 451-463 | Published online: 20 Jan 2022

References

  • Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428. doi:10.1038/nature07201
  • Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846. doi:10.1038/nature01320
  • Kolls JK, Lindén A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467–476. doi:10.1016/j.immuni.2004.08.018
  • Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140(6):871–882. doi:10.1016/j.cell.2010.02.029
  • Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323. doi:10.1038/nature09782
  • Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol. 2010;72(1):219–246. doi:10.1146/annurev-physiol-021909-135846
  • Abdellatif KR, Abdelgawad MA, Labib MB, Zidan TH. Synthesis and biological evaluation of new diarylpyrazole and triarylimidazoline derivatives as selective cox‐2 inhibitors. Arch Pharm. 2017;350(8):1600386. doi:10.1002/ardp.201600386
  • Vane JR, Botting RM. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med. 1998;104(3):2S–8S. doi:10.1016/S0002-9343(97)00203-9
  • Brune K, Patrignani P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J Pain Res. 2015;8:105. doi:10.2147/JPR.S75160
  • Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Nat Acad Sci. 1992;89(16):7384–7388. doi:10.1073/pnas.89.16.7384
  • Abdellatif K, Abdelall E, Bakr R. Nitric oxide-NSAIDs donor prodrugs as hybrid safe anti-inflammatory agents. Curr Top Med Chem. 2017;17(8):941–955. doi:10.2174/1568026616666160927153435
  • Abdelgawad MA, Bakr RB, Omar HA. Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorg Chem. 2017;74:82–90. doi:10.1016/j.bioorg.2017.07.007
  • Bakr RB, Azouz AA, Abdellatif KR. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo [3, 4-d] pyrimidine derivatives. J Enzyme Inhib Med Chem. 2016;31:6–12. doi:10.1080/14756366.2016.1186018
  • Abdellatif KR, Abdelgawad MA, Elshemy HA, Alsayed SS, Kamel G. Synthesis and anti-inflammatory evaluation of new 1, 3, 5-triaryl-4, 5-dihydro-1h-pyrazole derivatives possessing an aminosulphonyl pharmacophore. Arch Pharm Res. 2015;38(11):1932–1942. doi:10.1007/s12272-015-0606-7
  • Wang D, DuBois RN. The role of cox-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29(6):781. doi:10.1038/onc.2009.421
  • Griswold DE, Adams JL. Constitutive cyclooxygenase (cox‐1) and inducible cyclooxygenase (cox‐2): rationale for selective inhibition and progress to date. Med Res Rev. 1996;16(2):181–206. doi:10.1002/(SICI)1098-1128(199603)16:2<181::AID-MED3>3.0.CO;2-X
  • Lazzaroni M, Bianchi Porro G. Gastrointestinal side‐effects of traditional non‐steroidal anti‐inflammatory drugs and new formulations. Aliment Pharmacol Ther. 2004;20:48–58. doi:10.1111/j.1365-2036.2004.02037.x
  • Vane J, Bakhle Y, Botting R. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38(1):97–120. doi:10.1146/annurev.pharmtox.38.1.97
  • Abdelrahman MH, Youssif BG, Abdelazeem AH, et al. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual coxs/lox inhibitors endowed with anti-inflammatory activity. Eur J Med Chem. 2017;127:972–985. doi:10.1016/j.ejmech.2016.11.006
  • Abdelgawad MA, Bakr RB, El-Gendy AO, Kamel GM, Azouz AA, Bukhari SNA. Discovery of a cox-2 selective inhibitor hit with anti-inflammatory activity and gastric ulcer protective effect. Future Med Chem. 2017;9(16):1899–1912. doi:10.4155/fmc-2017-0115
  • Lacerda RB, de Lima CK, da Silva LL, et al. Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo [1, 2-a] pyridine symbiotic prototypes. Bioorg Med Chem. 2009;17(1):74–84. doi:10.1016/j.bmc.2008.11.018
  • Abdelgawad MA, Bakr RB, Azouz AA. Novel pyrimidine-pyridine hybrids: synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg Chem. 2018;77:339–348. doi:10.1016/j.bioorg.2018.01.028
  • Girgis AS, Mishriky N, Ellithey M, Hosni HM, Farag H. Novel synthesis of [1]-benzothiepino [5, 4-b] pyridine-3-carbonitriles and their anti-inflammatory properties. Bioorg Med Chem. 2007;15(6):2403–2413. doi:10.1016/j.bmc.2007.01.015
  • Renard J-F, Lecomte F, Hubert P, de Leval X, Pirotte B. N-(3-arylaminopyridin-4-yl) alkanesulfonamides as pyridine analogs of nimesulide: cyclooxygenases inhibition, anti-inflammatory studies and insight on metabolism. Eur J Med Chem. 2014;74:12–22. doi:10.1016/j.ejmech.2013.12.033
  • Chung S-T, Huang W-H, Huang C-K, et al. Synthesis and anti-inflammatory activities of 4h-chromene and chromeno [2, 3-b] pyridine derivatives. Res Chem Intermed. 2016;42(2):1195–1215. doi:10.1007/s11164-015-2081-7
  • Lu X, Zhang H, Li X, et al. Design, synthesis and biological evaluation of pyridine acyl sulfonamide derivatives as novel cox-2 inhibitors. Bioorg Med Chem. 2011;19(22):6827–6832. doi:10.1016/j.bmc.2011.09.034
  • Bekhit AA, Fahmy HT, Rostom SA, Baraka AM. Design and synthesis of some substituted 1h-pyrazolyl-thiazolo [4, 5-d] pyrimidines as anti-inflammatory–antimicrobial agents. Eur J Med Chem. 2003;38(1):27–36. doi:10.1016/S0223-5234(02)00009-0
  • Sondhi SM, Singh N, Johar M, Kumar A. Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives. Bioorg Med Chem. 2005;13(22):6158–6166. doi:10.1016/j.bmc.2005.06.063
  • Keche AP, Hatnapure GD, Tale RH, Rodge AH, Birajdar SS, Kamble VM. A novel pyrimidine derivatives with aryl urea, thiourea and sulfonamide moieties: synthesis, anti-inflammatory and antimicrobial evaluation. Bioorg Med Chem Lett. 2012;22(10):3445–3448. doi:10.1016/j.bmcl.2012.03.092
  • Garjani A, Davaran S, Rashidi M, Malek N. Protective effects of some azo derivatives of 5-aminosalicylic acid and their pegylated prodrugs on acetic acid-induced rat colitis. DARU J Pharmaceut Sci. 2004;12:24–30.
  • Abdu-Allah HH, El-Shorbagi A-NA, Abdel-Moty SG, El-Awady R, Abdel-Alim A. 5-aminosalyclic acid (5-asa): a unique anti-inflammatory salicylate. Med Chem. 2016;6(05):306–315. doi:10.4172/2161-0444.1000361
  • Sheng SF, Zheng HX, Liu J, Zhao ZB. Synthesis of phenol-class azo derivatives of 4-aminosalicylic acid. Chin Chem Lett. 2008;19(4):419–422. doi:10.1016/j.cclet.2008.01.042
  • Hassan GS, Soliman GA. Design, synthesis and anti-ulcerogenic effect of some of furo-salicylic acid derivatives on acetic acid-induced ulcerative colitis. Eur J Med Chem. 2010;45(9):4104–4112. doi:10.1016/j.ejmech.2010.05.071
  • Mohamed MS, Awad SM, Sayed AI. Synthesis of certain pyrimidine derivatives as antimicrobial agents and anti-inflammatory agents. Molecules. 2010;15(3):1882–1890. doi:10.3390/molecules15031882
  • Abdelgawad MA, Labib MB, Ali WA, Kamel G, Azouz AA, EL-Shaymaa E-N. Design, synthesis, analgesic, anti-inflammatory activity of novel pyrazolones possessing aminosulfonyl pharmacophore as inhibitors of cox-2/5-lox enzymes: histopathological and docking studies. Bioorg Chem. 2018;78:103–114. doi:10.1016/j.bioorg.2018.03.011
  • Abdelgawad MA, Labib MB, Abdel-Latif M. Pyrazole-hydrazone derivatives as anti-inflammatory agents: design, synthesis, biological evaluation, cox-1, 2/5-lox inhibition and docking study. Bioorg Chem. 2017;74:212–220. doi:10.1016/j.bioorg.2017.08.014
  • Abdelgawad MA, Mohamed AM, Musa A, Mostafa EM, Awad HM. Synthesis, chromatographic separation and antimicrobial evolution of new azoquinoline-8-ol. J Pharmaceut Sci Res. 2018;10:1314–1318.
  • Bakr RB, Elkanzi NA, Ghoneim AA, Moustafa S. Synthesis, molecular docking studies and in vitro antimicrobial evaluation of novel pyrimido [1, 2-a] quinoxaline and triazino [4, 3-a]-quinoxaline derivatives. Heterocycles. 2018;96(11):1941–1957. doi:10.3987/COM-18-13955
  • Elkanzi NA, Bakr RB, Ghoneim AA. Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano [2, 3‐b] pyridine and pyrrolo [2, 3‐b] pyrano [2.3‐d] pyridine derivatives. J Heterocycl Chem. 2019;56:406–416.
  • Bakr RB, Ghoneim AA, Azouz AA. Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo [4, 5-d] pyrimidine scaffold. Bioorg Chem. 2019;88:102964. doi:10.1016/j.bioorg.2019.102964
  • Belal A, Abdelgawad MA. New benzothiazole/benzoxazole-pyrazole hybrids with potential as cox inhibitors: design, synthesis and anticancer activity evaluation. Res Chem Intermed. 2017;43(7):3859–3872. doi:10.1007/s11164-016-2851-x
  • Oraby AK, Abdellatif KR, Abdelgawad MA, Attia KM, Dawe LN, Georghiou PE. 2, 4‐disubstituted phenylhydrazonopyrazolone and isoxazolone derivatives as antibacterial agents: synthesis, preliminary biological evaluation and docking studies. ChemistrySelect. 2018;3(11):3295–3301. doi:10.1002/slct.201800174
  • Abdellatif RA, Abdelgawad M, Elshemy. AH, Kahk M, El Amir M. Design, synthesis, antioxidant and anticancer activity of new coumarin derivatives linked with thiazole, isoxazole or pyrazole moiety. Lett Drug Des Discov. 2017;14(7):773–781. doi:10.2174/1570180813666161026153743
  • Bakr B, Mehany. BM, Abdellatif RA. Synthesis, egfr inhibition and anti-cancer activity of new 3, 6-dimethyl-1-phenyl-4-(substituted-methoxy) pyrazolo [3, 4-d] pyrimidine derivatives. Curr Med Chem Anticancer Agents. 2017;17:1389–1400.
  • Taddei D, Slawin AM, Woollins JD. 2‐(benzylsulfanyl)‐6‐chloro‐9‐isopropylpurine, a valuable intermediate in the synthesis of diaminopurine cyclin dependent kinase inhibitors. European J Org Chem. 2005;2005(5):939–947. doi:10.1002/ejoc.200400748
  • Bhuvaneswari K, Nagasundaram N, Lalitha A. Synthesis, anti‐inflammatory activity, and molecular docking study of novel azo bis antipyrine derivatives against cyclooxygenase‐2 enzyme. J Chin Chem Soc. 2021;68:27–33.
  • Korade SN, Patil JD, Gaikwad DS, et al. Synthesis and biological activities of novel aryldiazo substituted heterocycles. Org Prep Proced Int. 2020;52(2):147–165. doi:10.1080/00304948.2020.1716625
  • Korade SN, Pore DM. Basic ionic liquid [DPPA] cl− catalyzed synthesis of fluorescent 3‐acetoacetyl− 6‐aryldiazenyl‐coumarins. ChemistrySelect. 2019;4:4804–4808. doi:10.1002/slct.201900332
  • Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384(6610):644–648. doi:10.1038/384644a0
  • Khanmohammadi H, Erfantalab M, Bayat A, Babaei A, Sohrabi M. New 1, 2, 4-triazole-based azo–azomethine dyes. Part ii: synthesis, characterization, electrochemical properties and computational studies. Spectrochim Acta a Mol Biomol Spectrosc. 2012;97:876–884. doi:10.1016/j.saa.2012.07.041
  • Arbabi HA, Soltani SS, Salehi H, Rezazadeh S, Zonouzi A, Toosibashi M. Convenient synthesis of heterocyclic azo dyes in the class of pyranopyrazoles and chromenes. J Chem Res. 2018;42(2):68–72. doi:10.3184/174751918X15177611816526
  • Cho CH, Ogle CW. Cholinergic-mediated gastric mast cell degranulation with subsequent histamine h1-and h2-receptor activation in stress ulceration in rats. Eur J Pharmacol. 1979;55(1):23–33. doi:10.1016/0014-2999(79)90144-4