131
Views
1
CrossRef citations to date
0
Altmetric
Original Research

A Next-Generation Sequencing of Plasma Exosome-Derived microRNAs and Target Gene Analysis with a Microarray Database of Thermally Injured Skins: Identification of Blood-to-Tissue Interactions at Early Burn Stage

, , , , , , & show all
Pages 6783-6798 | Published online: 10 Dec 2021

References

  • Saavedra PAE, De Oliveira Leal JV, Areda CA, Galato D. The costs of burn victim hospital care around the world: a systematic review. Iran J Public Health. 2021;50(5):866–878. doi:10.18502/ijph.v50i5.6104
  • Salibian AA, Rosario ATD, Severo LAM, et al. Current concepts on burn wound conversion-A review of recent advances in understanding the secondary progressions of burns. Burns. 2016;42(5):1025–1035. doi:10.1016/j.burns.2015.11.007
  • Demling RH. The burn edema process: current concepts. J Burn Care Rehabil. 2005;26(3):207–227. doi:10.1097/01.BCR.0000162151.71482.B3
  • Kremer T, Abe D, Weihrauch M, et al. Burn plasma transfer induces burn edema in healthy rats. Shock. 2008;30(4):394–400. doi:10.1097/SHK.0b013e3181673908
  • Kremer T, Hernekamp F, Riedel K, et al. Topical application of cerium nitrate prevents burn edema after burn plasma transfer. Microvasc Res. 2009;78(3):425–431. doi:10.1016/j.mvr.2009.07.006
  • Hernekamp JF, Hu S, Schmidt K, Walther A, Lehnhardt M, Kremer T. Methysergide attenuates systemic burn edema in rats. Microvasc Res. 2013;89:115–121. doi:10.1016/j.mvr.2013.03.002
  • Hernekamp JF, Hu S, Schmidt K, Walther A, Kneser U, Kremer T. Cinanserin reduces plasma extravasation after burn plasma transfer in rats. Burns. 2013;39(6):1226–1233. doi:10.1016/j.burns.2013.01.005
  • Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19:243. doi:10.1186/s13054-015-0961-2
  • Yang D, Zhang W, Zhang H, et al. Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics. 2020;10(8):3684–3707. doi:10.7150/thno.41580
  • Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: current use and future applications. Clin Chim Acta. 2020;500:226–232. doi:10.1016/j.cca.2019.10.022
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:6478. doi:10.1126/science.aau6977
  • Mori MA, Ludwig RG, Garcia-Martin R, Brandao BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656–673. doi:10.1016/j.cmet.2019.07.011
  • Lin KH, Chu CM, Lin YK, et al. The abbreviated burn severity index as a predictor of acute respiratory distress syndrome in young individuals with severe flammable starch-based powder burn. Burns. 2018;44(6):1573–1578. doi:10.1016/j.burns.2018.01.006
  • Kivioja T, Vaharautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2011;9(1):72–74. doi:10.1038/nmeth.1778
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. doi:10.1093/bioinformatics/btp616
  • Tokar T, Pastrello C, Rossos AEM, et al. mirDIP 4.1-integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46(D1):D360–D370. doi:10.1093/nar/gkx1144
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Greco JA 3rd, Pollins AC, Boone BE, Levy SE, Nanney LB. A microarray analysis of temporal gene expression profiles in thermally injured human skin. Burns. 2010;36(2):192–204. doi:10.1016/j.burns.2009.06.211
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi:10.1093/nar/gkaa1074
  • Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11. doi:10.1186/1752-0509-8-S4-S11
  • Stelzer G, Rosen N, Plaschkes I, et al. The genecards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1):30 1–1 30 33. doi:10.1002/cpbi.5
  • Vigiola Cruz M, Carney BC, Luker JN, et al. Plasma ameliorates endothelial dysfunction in burn injury. J Surg Res. 2019;233:459–466. doi:10.1016/j.jss.2018.08.027
  • Cartotto R, Callum J. A review on the use of plasma during acute burn resuscitation. J Burn Care Res. 2020;41(2):433–440. doi:10.1093/jbcr/irz184
  • D’Abbondanza JA, Shahrokhi S. Burn infection and burn sepsis. Surg Infect (Larchmt). 2021;22(1):58–64. doi:10.1089/sur.2020.102
  • Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–360. doi:10.1016/j.devcel.2019.04.011
  • Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression. J Hematol Oncol. 2019;12(1):53. doi:10.1186/s13045-019-0739-0
  • Oryan A, Alemzadeh E, Moshiri A. Burn wound healing present concepts, treatment strategies and future directions. J Wound Care. 2017;26(1):5–19. doi:10.12968/jowc.2017.26.1.5
  • Alshehabat M, Hananeh W, Ismail ZB, Rmilah SA, Abeeleh MA. Wound healing in immunocompromised dogs: a comparison between the healing effects of moist exposed burn ointment and honey. Vet World. 2020;13(12):2793–2797. doi:10.14202/vetworld.2020.2793-2797
  • Calum H, Høiby N, Moser C. Mouse model of burn wound and infection: thermal (Hot Air) lesion-induced immunosuppression. Curr Protoc Mouse Biol. 2017;7(2):77–87. doi:10.1002/cpmo.25
  • Zhu Z, Ding J, Ma Z, Iwashina T, Tredget EE. Alternatively activated macrophages derived from THP-1 cells promote the fibrogenic activities of human dermal fibroblasts. Wound Repair Regen. 2017;25(3):377–388. doi:10.1111/wrr.12532
  • Icard P, Fournel L, Wu Z, Alifano M, Lincet H. Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci. 2019;44(6):490–501. doi:10.1016/j.tibs.2018.12.007
  • Vande Berg JS, Robson MC. Arresting cell cycles and the effect on wound healing. Surg Clin North Am. 2003;83(3):509–520. doi:10.1016/s0039-6109(02)00195-0
  • Zhang X, Zhang G, Huang H, Li H, Lin S, Wang Y. Differentially expressed MicroRNAs in radioresistant and radiosensitive atypical meningioma: a clinical study in Chinese patients. Front Oncol. 2020;10:501. doi:10.3389/fonc.2020.00501
  • Dai Y, Huang L, Zhang H, et al. Differentially expressed microRNAs as diagnostic biomarkers for infected tibial non-union. Injury. 2021;52(1):11–18. doi:10.1016/j.injury.2020.09.016
  • Li F, Li H, Li S, et al. miR-365a-5p suppresses gefitinib resistance in non-small-cell lung cancer through targeting PELI3. Pharmacogenomics. 2020;21(11):771–783. doi:10.2217/pgs-2020-0006
  • He Y, Shi Y, Liu R, et al. PELI3 mediates pro-tumor actions of down-regulated miR-365a-5p in non-small cell lung cancer. Biol Res. 2019;52(1):24. doi:10.1186/s40659-019-0230-y
  • Liu S, Tian Y, Zhu C, Yang X, Sun Q. High miR-718 suppresses phosphatase and tensin homolog (PTEN) expression and correlates to unfavorable prognosis in gastric cancer. Med Sci Monit. 2018;24:5840–5850. doi:10.12659/MSM.909527
  • Wang X, Qi M. miR-718 is involved in malignancy of papillary thyroid cancer through repression of PDPK1. Pathol Res Pract. 2018;214(11):1787–1793. doi:10.1016/j.prp.2018.08.022
  • Zhong Y, Li Y, Song T, Zhang D. MiR-718 mediates the indirect interaction between lncRNA SEMA3B-AS1 and PTEN to regulate the proliferation of hepatocellular carcinoma cells. Physiol Genomics. 2019;51(10):500–505. doi:10.1152/physiolgenomics.00019.2019
  • Leng R, Zha L, Tang L. MiR-718 represses VEGF and inhibits ovarian cancer cell progression. FEBS Lett. 2014;588(12):2078–2086. doi:10.1016/j.febslet.2014.04.040
  • Zakrzewska M, Gruszka R, Stawiski K, et al. Expression-based decision tree model reveals distinct microRNA expression pattern in pediatric neuronal and mixed neuronal-glial tumors. BMC Cancer. 2019;19(1):544. doi:10.1186/s12885-019-5739-5
  • Yang B, Jing C, Wang J, et al. Identification of microRNAs associated with lymphangiogenesis in human gastric cancer. Clin Transl Oncol. 2014;16(4):374–379. doi:10.1007/s12094-013-1081-6
  • Chen M, Mithraprabhu S, Ramachandran M, Choi K, Khong T, Spencer A. Utility of circulating cell-free RNA analysis for the characterization of global transcriptome profiles of multiple myeloma patients. Cancers. 2019;11(6):Jun. doi:10.3390/cancers11060887
  • Wang X, Chen Q, Wang X, et al. ZEB1 activated-VPS9D1-AS1 promotes the tumorigenesis and progression of prostate cancer by sponging miR-4739 to upregulate MEF2D. Biomed Pharmacother. 2020;122:109557. doi:10.1016/j.biopha.2019.109557
  • Delic D, Eisele C, Schmid R, et al. Urinary exosomal miRNA signature in Type II diabetic nephropathy patients. PLoS One. 2016;11(3):e0150154. doi:10.1371/journal.pone.0150154
  • Li JY, Cheng B, Wang XF, et al. Circulating MicroRNA-4739 may be a potential biomarker of critical limb ischemia in patients with diabetes. Biomed Res Int. 2018;2018:4232794. doi:10.1155/2018/4232794
  • Wang M, Xiong L, Jiang LJ, et al. miR-4739 mediates pleural fibrosis by targeting bone morphogenetic protein 7. EBioMedicine. 2019;41:670–682. doi:10.1016/j.ebiom.2019.02.057
  • Li J, Xia T, Cao J, et al. RP11-295G20.2 facilitates hepatocellular carcinoma progression via the miR-6884-3p/CCNB1 pathway. Aging. 2020;12(14):14918–14932. doi:10.18632/aging.103552
  • Bhayana S, Song F, Jacob J, et al. Urinary miRNAs as biomarkers for noninvasive evaluation of radiation-induced renal tubular injury. Radiat Res. 2017;188(6):626–635. doi:10.1667/RR14828.1
  • Miah S, Dudziec E, Drayton RM, et al. An evaluation of urinary microRNA reveals a high sensitivity for bladder cancer. Br J Cancer. 2012;107(1):123–128. doi:10.1038/bjc.2012.221
  • Du S, Li H, Lu F, Zhang S, Tang J. Circular RNA ZNF609 promotes the malignant progression of glioma by regulating miR-1224-3p/PLK1 signaling. J Cancer. 2021;12(11):3354–3366. doi:10.7150/jca.54934
  • Zuo Y, Shen W, Wang C, Niu N, Pu J. Circular RNA Circ-ZNF609 promotes lung adenocarcinoma proliferation by modulating miR-1224-3p/ETV1 signaling. Cancer Manag Res. 2020;12:2471–2479. doi:10.2147/CMAR.S232260
  • Yang JZ, Bian L, Hou JG, Wang HY. MiR-550a-3p promotes non-small cell lung cancer cell proliferation and metastasis through down-regulating TIMP2. Eur Rev Med Pharmacol Sci. 2018;22(13):4156–4165. doi:10.26355/eurrev_201807_15408
  • Ho JY, Hsu RJ, Wu CH, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7(33):53853–53868. doi:10.18632/oncotarget.10793
  • Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379. doi:10.1146/annurev-biochem-060308-103103