60
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Alterations of Asymmetric Dimethylarginine (ADMA)-Containing Protein Profiles Associated with Chronic Pancreatitis Pathogenesis

, , , &
Pages 7381-7392 | Published online: 24 Dec 2021

References

  • Beyer G, Habtezion A, Werner J, Lerch MM, Mayerle J. Chronic pancreatitis. Lancet. 2020;396(10249):499–512. doi:10.1016/s0140-6736(20)31318-0
  • Yang D, Forsmark CE. Chronic pancreatitis. Curr Opin Gastroenterol. 2017;33(5):396–403. doi:10.1097/MOG.0000000000000377
  • Kleeff J, Whitcomb DC, Shimosegawa T, et al. Chronic pancreatitis. Nat Rev Dis Primers. 2017;3(1):17060. doi:10.1038/nrdp.2017.60
  • Murn J, Shi Y. The winding path of protein methylation research: milestones and new frontiers. Nat Rev Mol Cell Biol. 2017;18(8):517. doi:10.1038/nrm.2017.35
  • Jarrold J, Davies CC. PRMTs and arginine methylation: cancer’s best-kept secret? Trends Mol Med. 2019;25(11):993–1009. doi:10.1016/j.molmed.2019.05.007
  • Guccione E, Richard S. The regulation, functions and clinical relevance of arginine methylation. Nat Rev Mol Cell Biol. 2019;20(10):642–657. doi:10.1038/s41580-019-0155-x
  • Blanc RS, Richard S. Arginine methylation: the coming of age. Mol Cell. 2017;65(1):8. doi:10.1016/j.molcel.2016.11.003
  • Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009;33(1):1–13. doi:10.1016/j.molcel.2008.12.013
  • Shishkova E, Zeng H, Liu F, et al. Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun. 2017;8:15571.
  • Raposo AE, Piller SC. Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div. 2018;13(1):3. doi:10.1186/s13008-018-0036-2
  • Jambhekar A, Dhall A, Shi Y. Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 2019;20(10):625–641. doi:10.1038/s41580-019-0151-1
  • Couto ESA, Wu CY-C, Citadin CT, et al. Protein arginine methyltransferases in cardiovascular and neuronal function. Mol Neurobiol. 2020;57(3):1716–1732. doi:10.1007/s12035-019-01850-z
  • Wei M, Tan C, Tang Z, et al. Proteome-wide alterations of asymmetric arginine dimethylation associated with pancreatic ductal adenocarcinoma pathogenesis. Front Cell Dev Biol. 2020;8:545934. doi:10.3389/fcell.2020.545934
  • Poulard C, Corbo L, Le Romancer M. Protein arginine methylation/demethylation and cancer. Oncotarget. 2016;7(41):67532–67550. doi:10.18632/oncotarget.11376
  • Carlson SM, Gozani O. Nonhistone Lysine methylation in the regulation of cancer pathways. Cold Spring Harb Perspect Med. 2016;6(11):a026435. doi:10.1101/cshperspect.a026435
  • Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. 2013;13(1):37–50. doi:10.1038/nrc3409
  • Waldmann T, Schneider R. Targeting histone modifications–epigenetics in cancer. Curr Opin Cell Biol. 2013;25(2):184–189. doi:10.1016/j.ceb.2013.01.001
  • Kim JH, Yoo BC, Yang WS, et al. The role of protein arginine methyltransferases in inflammatory responses. Mediators Inflamm. 2016;2016:4028353. doi:10.1155/2016/4028353
  • Musiani D, Bok J, Massignani E, et al. Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Sci Signal. 2019;12(575). doi:10.1126/scisignal.aat8388
  • Zeeshan M, Kaur I, Joy J, et al. Proteomic identification and analysis of arginine-methylated proteins of plasmodium falciparum at asexual blood stages. J Proteome Res. 2017;16(2):368–383. doi:10.1021/acs.jproteome.5b01052
  • Fisk JC, Li J, Wang H, et al. Proteomic analysis reveals diverse classes of arginine methylproteins in mitochondria of trypanosomes. Mol Cell Proteom. 2013;12(2):302. doi:10.1074/mcp.M112.022533
  • Sylvestersen KB, Horn H, Jungmichel S, Jensen LJ, Nielsen ML. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest. Mol Cell Proteom. 2014;13(8):2072–2088. doi:10.1074/mcp.O113.032748
  • Lim Y, Lee JY, Ha SJ, et al. Proteome-wide identification of arginine methylation in colorectal cancer tissues from patients. Proteome Sci. 2020;18(1):6. doi:10.1186/s12953-020-00162-8
  • Radzisheuskaya A, Shliaha PV, Grinev V, et al. PRMT5 methylome profiling uncovers a direct link to splicing regulation in acute myeloid leukemia. Nat Struct Mol Biol. 2019;26(11):999–1012. doi:10.1038/s41594-019-0313-z
  • Uhlmann T, Geoghegan VL, Thomas B, et al. A method for large-scale identification of protein arginine methylation. Mol Cell Proteomics. 2012;11(11):1489–1499. doi:10.1074/mcp.M112.020743
  • Guo A, Gu H, Zhou J, et al. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics. 2014;13(1):372–387. doi:10.1074/mcp.O113.027870
  • Geoghegan V, Guo A, Trudgian D, Thomas B, Acuto O. Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun. 2015;6:6758.
  • Yakubu RR, Silmon de Monerri NC, Nieves E, Kim K, Weiss LM. Comparative monomethylarginine proteomics suggests that Protein Arginine Methyltransferase 1 (PRMT1) is a significant contributor to arginine monomethylation in toxoplasma gondii. Mol Cell Proteomics. 2017;16(4):567–580. doi:10.1074/mcp.M117.066951
  • Zou WB, Ru N, Wu H, et al. Guidelines for the diagnosis and treatment of chronic pancreatitis in China (2018 edition). Hepatobiliary Pancreat Dis Int. 2019;18(2):103–109. doi:10.1016/j.hbpd.2019.02.004
  • Tong Z, Kim MS, Pandey A, Espenshade PJ. Identification of candidate substrates for the Golgi Tul1 E3 ligase using quantitative diGly proteomics in yeast. Mol Cell Proteomics. 2014;13(11):2871–2882. doi:10.1074/mcp.M114.040774
  • Jobert L, Argentini M, Tora L. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp Cell Res. 2009;315(7):1273–1286. doi:10.1016/j.yexcr.2008.12.008
  • Covic M, Hassa PO, Saccani S, et al. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. EMBO J. 2005;24(1):85–96. doi:10.1038/sj.emboj.7600500
  • Zhang T, Wu J, Ungvijanpunya N, et al. Smad6 methylation represses nfkappab activation and periodontal inflammation. J Dent Res. 2018;97(7):810–819. doi:10.1177/0022034518755688
  • Pinho AV, Chantrill L, Rooman I. Chronic pancreatitis: a path to pancreatic cancer. Cancer Lett. 2014;345(2):203–209. doi:10.1016/j.canlet.2013.08.015
  • Cheng Y, Yang H, Sun Y, et al. RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93. Oncotarget. 2017;8(59):99567–99579. doi:10.18632/oncotarget.20433
  • Liu S, Zhang J, Yin L, et al. The lncRNA RUNX1-IT1 regulates C-FOS transcription by interacting with RUNX1 in the process of pancreatic cancer proliferation, migration and invasion. Cell Death Dis. 2020;11(6):412. doi:10.1038/s41419-020-2617-7
  • Zhao X, Jankovic V, Gural A, et al. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 2008;22(5):640–653. doi:10.1101/gad.1632608
  • Gordon ED, Simpson LJ, Rios CL, et al. Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc Natl Acad Sci USA. 2016;113(31):8765–8770. doi:10.1073/pnas.1601914113
  • Liu H, Lorenzini PA, Zhang F, et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res. 2018;46(12):6069–6086. doi:10.1093/nar/gky401
  • Beer S, Sahin-Toth M. Exonic variants affecting pre-mRNA splicing add to genetic burden in chronic pancreatitis. Gut. 2014;63(5):860–861. doi:10.1136/gutjnl-2013-305981
  • Hu J, Yang H, Mu J, et al. Nitric oxide regulates protein methylation during stress responses in plants. Mol Cell. 2017;67(4):702–710.e4. doi:10.1016/j.molcel.2017.06.031
  • Ma AS, Moran-Jones K, Shan J, et al. Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding protein. J Biol Chem. 2002;277(20):18010–18020. doi:10.1074/jbc.M200050200
  • Asghari F, Fitzner B, Holzhuter S-A, et al. Identification of quantitative trait loci for murine autoimmune pancreatitis. J Med Genet. 2011;48(8):557–562. doi:10.1136/jmg.2011.089730
  • Mishra N, Reddy KS, Timilsina U, Gaur D, Gaur R. Human APOBEC3B interacts with the heterogenous nuclear ribonucleoprotein A3 in cancer cells. J Cell Biochem. 2018;119(8):6695–6703. doi:10.1002/jcb.26855
  • Ou MY, Ju XC, Cai YJ, et al. Heterogeneous nuclear ribonucleoprotein A3 controls mitotic progression of neural progenitors via interaction with cohesin. Development. 2020;147:dev185132. doi:10.1242/dev.185132
  • Quidville V, Alsafadi S, Goubar A, et al. Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy. Cancer Res. 2013;73(7):2247–2258. doi:10.1158/0008-5472.CAN-12-2501