279
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promotes Diabetic Wound Healing via Regulating Angiogenesis, Inflammatory Response and Skin Flora

ORCID Icon, , , &
Pages 4921-4938 | Published online: 26 Aug 2022

References

  • Krug EG. Trends in diabetes: sounding the alarm. Lancet. 2016;387(10027):1485–1486. doi:10.1016/S0140-6736(16)30163-5
  • Basu S, Yudkin JS, Kehlenbrink S, et al. Estimation of global insulin use for type 2 diabetes, 2018–30: a microsimulation analysis. Lancet Diabetes Endocrinol. 2019;7(1):25–33. doi:10.1016/S2213-8587(18)30303-6
  • Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Investig. 2007;117(5):1219–1222. doi:10.1172/JCI32169
  • Holl J, Kowalewski C, Zimek Z, et al. Chronic diabetic wounds and their treatment with skin substitutes. Cells. 2021;10(3):655. doi:10.3390/cells10030655
  • Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–945. doi:10.1126/science.1253836
  • Lou P, Liu S, Xu X, Pan C, Lu Y, Liu J. Extracellular vesicle-based therapeutics for the regeneration of chronic wounds: current knowledge and future perspectives. Acta Biomaterialia. 2021;119:42–56. doi:10.1016/j.actbio.2020.11.001
  • Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. Int J Molecul Sci. 2017;18(6):1167. doi:10.3390/ijms18061167
  • Yang Y, Zhao X, Yu J, et al. Bioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatment. Bioactive Material. 2021;6(11):3962–3975. doi:10.1016/j.bioactmat.2021.04.007
  • Xu Z, Han S, Gu Z, Wu J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthcare Material. 2020;9(5):1901502. doi:10.1002/adhm.201901502
  • Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131–194. doi:10.1016/j.cis.2018.11.008
  • Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Material Res. 1997;34(1):21–28. doi:10.1002/(SICI)1097-4636(199701)34:1<21::AID-JBM4>3.0.CO;2-P
  • Zhang M, Zhao X. Alginate hydrogel dressings for advanced wound management. Int J Biological Macromol. 2020;162:1414–1428. doi:10.1016/j.ijbiomac.2020.07.311
  • Zang S, Mu R, Chen F, et al. Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Materials Sci Eng. 2019;99:919–928. doi:10.1016/j.msec.2019.02.024
  • Asfour MH, Abd El-Alim SH, Awad GEA, Kassem AA. Chitosan/β-glycerophosphate in situ forming thermo-sensitive hydrogel for improved ocular delivery of moxifloxacin hydrochloride. Euro J Pharmaceuti Sci. 2021;167:106041. doi:10.1016/j.ejps.2021.106041
  • Zhou P, Li X, Zhang B, Shi Q, Li D, Ju X. A human umbilical cord mesenchymal stem cell-conditioned medium/chitosan/collagen/β-glycerophosphate thermosensitive hydrogel promotes burn injury healing in mice. BioMed Res Int. 2019;2019:5768285. doi:10.1155/2019/5768285
  • Zhang D, Ouyang Q, Hu Z, et al. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol. 2021;173:591–606. doi:10.1016/j.ijbiomac.2021.01.157
  • Wei L, Tan J, Li L, et al. Chitosan/alginate hydrogel dressing loaded FGF/VE-cadherin to accelerate full-thickness skin regeneration and more normal skin repairs. Int J Mol Sci. 2022;23(3):1249. doi:10.3390/ijms23031249
  • Huang Y, Yang N, Teng D, et al. Antibacterial peptide NZ2114-loaded hydrogel accelerates Staphylococcus aureus-infected wound healing. Appl Microbiol Biotechnol. 2022;106(9–10):3639–3656. doi:10.1007/s00253-022-11943-w
  • Gu L, Mo E, Yang Z, et al. Effects of red deer antlers on cutaneous wound healing in full-thickness rat models. Asian-Australas J Anim Sci. 2008;21(2):277–290. doi:10.5713/ajas.2008.70348
  • Zhang Z, Zhao M, Wang J, Ding Y, Dai X, Li Y. Oral administration of skin gelatin isolated from chum salmon (oncorhynchus keta) enhances wound healing in diabetic rats. Mar Drugs. 2011;9(5):696–711. doi:10.3390/md9050696
  • Ouyang -Q-Q, Hu Z, Lin Z-P, et al. Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. Int J Biol Macromol. 2018;112:1191–1198. doi:10.1016/j.ijbiomac.2018.01.217
  • Tseng S-H, Sung H-C, Chen L-G, et al. Effects of velvet antler with blood on bone in ovariectomized rats. Molecules. 2012;17(9):10574–10585. doi:10.3390/molecules170910574
  • Lv -J-J, Liu Y, Zeng X-Y, et al. Anti-fatigue peptides from the enzymatic hydrolysates of cervus elaphus blood. Molecules. 2021;26(24):7614. doi:10.3390/molecules26247614
  • Ma L, Le G, Qian J, Jiang H, Shi Y. Preparation and bioactivity of immunopeptide from cervus-elaphus linnaeas antler blood. Nat Prod Res Develop. 2009;21(1):125–182.
  • Hao M, Peng X, Sun S, Ding C, Liu W. Chitosan/sodium alginate/velvet antler blood peptides hydrogel promoted wound healing by regulating PI3K/AKT/mTOR and SIRT1/NF-κB pathways. Front Pharmacol. 2022;13:913408.
  • Zhang D, Hu Z, Zhang L, Lu S, Liang F, Chitosan-Based Thermo-Sensitive LS. Hydrogel loading oyster peptides for hemostasis application. Materials. 2020;13(21):5038. doi:10.3390/ma13215038
  • Abueva CDG, Lee B-T. Poly(vinylphosphonic acid) immobilized on chitosan: a glycosaminoglycan-inspired matrix for bone regeneration. Int J Biol Macromol. 2014;64:294–301. doi:10.1016/j.ijbiomac.2013.12.018
  • Xu C, Guan S, Xu J, et al. Preparation, characterization and antioxidant activity of protocatechuic acid grafted carboxymethyl chitosan and its hydrogel. Carbohydr Polym. 2021;252:117210. doi:10.1016/j.carbpol.2020.117210
  • Sun S, Hao M, Ding C, et al. SF/PVP nanofiber wound dressings loaded with phlorizin: preparation, characterization, in vivo and in vitro evaluation. Biointerfaces. 2022;217:112692. doi:10.1016/j.colsurfb.2022.112692
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47–e47. doi:10.1093/nar/gkv007
  • Liu H, Liu H, Deng X, et al. CXCR4 antagonist delivery on decellularized skin scaffold facilitates impaired wound healing in diabetic mice by increasing expression of SDF-1 and enhancing migration of CXCR4-positive cells. Wound Repair Regen. 2017;25(4):652–664. doi:10.1111/wrr.12552
  • Wang G, Wang X, Huang L. Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: a pilot study in vitro. Biotechnol Biotechnol Equip. 2017;31(4):766–773. doi:10.1080/13102818.2017.1332493
  • Cui H, Cui L, Zhang P, Huang Y, Wei Y, Chen X. In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair. Macromol Biosci. 2014;14(3):440–450. doi:10.1002/mabi.201300366
  • Bölgen N, Demir D, Yalçın MS, Özdemir S. Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. Int J Biol Macromol. 2020;161:1581–1590. doi:10.1016/j.ijbiomac.2020.08.056
  • Hu S, Bi S, Yan D, et al. Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydr Polym. 2018;184:154–163. doi:10.1016/j.carbpol.2017.12.033
  • Yang X, Yang K, Wu S, et al. Cytotoxicity and wound healing properties of PVA/ws-chitosan/glycerol hydrogels made by irradiation followed by freeze–thawing. Radiat Phys Chem. 2010;79(5):606–611. doi:10.1016/j.radphyschem.2009.12.017
  • Elmowafy M, Shalaby K, Salama A, et al. Soy isoflavone-loaded alginate microspheres in thermosensitive gel base: attempts to improve wound-healing efficacy. J Pharm Pharmacol. 2019;71(5):774–787. doi:10.1111/jphp.13066
  • Elbialy ZI, Assar DH, Abdelnaby A, et al. Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model. Biomed Pharmacother. 2021;137:111349. doi:10.1016/j.biopha.2021.111349
  • Yang Y, Liang Y, Chen J, Duan X, Guo B. Mussel-inspired adhesive antioxidant antibacterial hemostatic composite hydrogel wound dressing via photo-polymerization for infected skin wound healing. Bioactive Material. 2022;8:341–354. doi:10.1016/j.bioactmat.2021.06.014
  • Song Y, Wu M-S, Tao G, Lu M-W, Lin J, Huang J-Q. Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Res Int. 2020;137:109410. doi:10.1016/j.foodres.2020.109410
  • Zha E, Gao S, Pi Y, Li X, Wang Y, Yue X. Wound healing by a 3.2 kDa recombinant polypeptide from velvet antler of Cervusnippon Temminck. Biotechnol Lett. 2012;34(4):789–793. doi:10.1007/s10529-011-0829-8
  • Zhao W-Y, Fang -Q-Q, Wang X-F, et al. Chitosan-calcium alginate dressing promotes wound healing: a preliminary study. Wound Repair Regen. 2020;28(3):326–337. doi:10.1111/wrr.12789
  • Gharaboghaz M, Farahpour MR, Saghaie S. Topical co-administration of Teucrium polium hydroethanolic extract and Aloe vera gel triggered wound healing by accelerating cell proliferation in diabetic mouse model. Biomed Pharmacother. 2020;127:110189. doi:10.1016/j.biopha.2020.110189
  • Hao M, Liu W, Ding C, et al. Identification of hub genes and small molecule therapeutic drugs related to breast cancer with comprehensive bioinformatics analysis. PeerJ. 2020;8:e9946. doi:10.7717/peerj.9946
  • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet. 2006;7(1):55–65. doi:10.1038/nrg1749
  • Thangarajah H, Vial IN, Grogan RH, et al. HIF-1α dysfunction in diabetes. Cell Cycle. 2010;9(1):75–79. doi:10.4161/cc.9.1.10371
  • Wang X-F, Li M-L, Fang -Q-Q, et al. Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes. Bioactive Material. 2021;6(1):230–243. doi:10.1016/j.bioactmat.2020.08.003
  • Kasiewicz LN, Whitehead KA. Silencing TNFα with lipidoid nanoparticles downregulates both TNFα and MCP-1 in an in vitro co-culture model of diabetic foot ulcers. Acta Biomaterialia. 2016;32:120–128. doi:10.1016/j.actbio.2015.12.023
  • Mirza RE, Fang MM, Ennis WJ, Koh TJ. Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 2013;62(7):2579–2587. doi:10.2337/db12-1450
  • Doré J, Blottière H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–199. doi:10.1016/j.copbio.2015.01.002
  • Zhu J, Wu M, Zhou H, Cheng L, Wei X, Wang Y. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Res Int. 2021;148:110594. doi:10.1016/j.foodres.2021.110594
  • Orenstein A, Klein D, Kopolovic J, et al. The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections. FEMS Immunol Med Microbiol. 1997;19(4):307–314. doi:10.1111/j.1574-695X.1997.tb01101.x
  • Khmaladze I, Butler É, Fabre S, Gillbro JM. Lactobacillus reuteri DSM 17938—A comparative study on the effect of probiotics and lysates on human skin. Exp Dermatol. 2019;28(7):822–828. doi:10.1111/exd.13950