417
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Microbiome: Role in Inflammatory Skin Diseases

, , , , , , , , , & show all
Pages 1057-1082 | Received 10 Oct 2023, Accepted 23 Jan 2024, Published online: 15 Feb 2024

References

  • Edslev S, Agner T, Andersen P. Skin microbiome in atopic dermatitis. Acta Derm Venereol. 2020;100:adv00164. doi:10.2340/00015555-3514
  • Moreira A, Torres B, Peruzzo J, Mota A, Eyerich K, Ring J. Skin symptoms as diagnostic clue for autoinflammatory diseases*. An Bras Dermatol. 2017;92:72–80. doi:10.1590/abd1806-4841.20175208
  • Nickoloff B. Cracking the cytokine code in psoriasis. Nat Med. 2007;13:242–244. doi:10.1038/nm0307-242
  • Oh J, Byrd AL, Deming C, et al. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514(7520):59–64. doi:10.1038/nature13786
  • Schommer NN, Gallo R. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21:660–668. doi:10.1016/j.tim.2013.10.001
  • Kwiecien K, Zegar A, Jung J, et al. Architecture of antimicrobial skin defense. Cytokine Growth Factor Rev. 2019;49:70–84. doi:10.1016/j.cytogfr.2019.08.001
  • Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954–959. doi:10.1126/science.1260144
  • Grice EA. The intersection of microbiome and host at the skin interface: genomic- and metagenomic-based insights. Genome Res. 2015;25(10):1514. doi:10.1101/gr.191320.115
  • Agak GW, Kao S, Ouyang K, et al. Phenotype and antimicrobial activity of Th17 cells induced by propionibacterium acnes strains associated with healthy and acne skin. J Invest Dermatol. 2018;138(2):316–324. doi:10.1016/j.jid.2017.07.842
  • Ea G, Hh K, C S, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931). doi:10.1126/science.1171700
  • Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–370. doi:10.1038/nature12171
  • Dréno B, Dagnelie M, Khammari A, Corvec S. The skin microbiome: a new actor in inflammatory acne. Am J Clin Dermatol. 2020;21:18–24. doi:10.1007/s40257-020-00531-1
  • l CA, Nizet V, l GR. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158(3):442–455. doi:10.1111/j.1365-2133.2008.08437.x
  • Chen P, He G, Qian J, Zhan Y, Xiao R. Potential role of the skin microbiota in Inflammatory skin diseases. J Cosmet Dermatol. 2020;20:400–409. doi:10.1111/jocd.13538
  • Willerslev-Olsen A, Buus T, Nastasi C, et al. Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer J. 2020. doi:10.1038/s41408-020-0324-3
  • Gut Microbiota FZ. Probiotics, and their interactions in prevention and treatment of atopic dermatitis: a review. Front Immunol. 2021;12:13.
  • Sabat R, Wolk K, Loyal L, Döcke W, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol. 2019;41:359–377. doi:10.1007/s00281-019-00742-7
  • Nakatsuji T, Chiang H, Jiang SB, Nagarajan H, Zengler K, Gallo R. The microbiome extends to subepidermal compartments of normal skin. Nat Commun. 2013;4. doi:10.1038/ncomms2441
  • Moher D, Liberati A, Tetzlaff J, Altman D. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535–b2535. doi:10.1136/bmj.b2535
  • Johnson JS, Spakowicz D, Hong B, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10. doi:10.1038/s41467-019-13036-1
  • Godlewska U, Brzoza P, Kwiecien K, Kwitniewski M, Cichy J. Metagenomic studies in inflammatory skin diseases. Curr Microbiol. 2020;77:3201–3212. doi:10.1007/s00284-020-02163-4
  • Kong H, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–859. doi:10.1101/gr.131029.111
  • Kim MH, Rho M, Choi JP, et al. A metagenomic analysis provides a culture-independent pathogen detection for atopic dermatitis. Allergy Asthma Immunol Res. 2017;9:453. doi:10.4168/aair.2017.9.5.453
  • Shi B, Bangayan NJ, Curd E, et al. The skin microbiome is different in pediatric versus adult atopic dermatitis. J Allergy Clin Immunol. 2016;138:1233–1236. doi:10.1016/j.jaci.2016.04.053
  • Clausen M, Edslev S, Andersen P, Clemmensen K, Krogfelt K, Agner T. Staphylococcus aureus colonization in atopic eczema and its association with filaggrin gene mutations. Br J Dermatol. 2017;177:1394–1400. doi:10.1111/bjd.15470
  • Baurecht H, Rühlemann M, Rodriguez E, et al. Epidermal lipid composition, barrier integrity, and eczematous inflammation are associated with skin microbiome configuration. J Allergy Clin Immunol. 2018;141:1668–1676.e16. doi:10.1016/j.jaci.2018.01.019
  • Callewaert C, Nakatsuji T, Knight R, et al. IL-4Rα blockade by dupilumab decreases staphylococcus aureus colonization and increases microbial diversity in atopic dermatitis. J Invest Dermatol. 2019. doi:10.1016/j.jid.2019.05.024
  • Lin Q, Panchamukhi A, Li P, et al. Malassezia and Staphylococcus dominate scalp microbiome for seborrheic dermatitis. Bioprocess Biosyst Eng. 2020;44:965–975. doi:10.1007/s00449-020-02333-5
  • Xu Z, Wang Z, Yuan C, et al. Dandruff is associated with the conjoined interactions between host and microorganisms. Sci Rep. 2016. doi:10.1038/srep24877
  • Park T, Kim HJ, Myeong NR, et al. Collapse of human scalp microbiome network in dandruff and seborrhoeic dermatitis. Exp Dermatol. 2017;26:835–838. doi:10.1111/exd.13293
  • Saxena R, Mittal P, Clavaud C, et al. Comparison of healthy and dandruff scalp microbiome reveals the role of commensals in scalp health. Front Cell Infect Microbiol. 2018. doi:10.3389/fcimb.2018.00346
  • Grimshaw S, Smith AM, Arnold D, Xu E, Hoptroff M, Murphy B. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS One. 2019;14:e0225796. doi:10.1371/journal.pone.0225796
  • Rainer B, Thompson K, Antonescu C, et al. Characterization and analysis of the skin microbiota in rosacea: a case–control study. Am J Clin Dermatol. 2019. doi:10.1007/s40257-019-00471-5
  • Tett AJ, Pasolli E, Farina S, et al. Unexplored diversity and strain-level structure of the skin microbiome associated with psoriasis. Npj Biofilms Microbiomes. 2017;3. doi:10.1038/s41522-017-0022-5
  • Langan E, Künstner A, Miodovnik M, et al. Combined culture and metagenomic analyses reveal significant shifts in the composition of the cutaneous microbiome in psoriasis. Br J Dermatol. 2019;181:1254–1264. doi:10.1111/bjd.17989
  • Chang H, Yan D, Singh RK, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6. doi:10.1186/s40168-018-0533-1
  • Wang H, Chan MWM, Chan H, Pang H. Longitudinal changes in skin microbiome and microbes associated with change in skin status in patients with psoriasis. Acta Derm Venereol. 2020;100:adv00329. doi:10.2340/00015555-3638
  • Kim J, Park T, Kim HJ, An S, Sul W. Inferences in microbial structural signatures of acne microbiome and mycobiome. J Microbiol. 2021. doi:10.1007/s12275-021-0647-1
  • Barnard E, Shi B, Kang D, Craft N, Li H. The balance of metagenomic elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6. doi:10.1038/srep39491
  • Capone KA, Dowd S, Stamatas G, Nikolovski J. Diversity of the Human Skin Microbiome Early in Life. J Invest Dermatol. 2011;131:2026–2032. doi:10.1038/jid.2011.168
  • Zheng Y, Wang Q, Ma L, et al. Shifts in the skin microbiome associated with diaper dermatitis and emollient treatment amongst infants and toddlers in China. Exp Dermatol. 2019;28:1289–1297. doi:10.1111/exd.14028
  • Malgotra V, Singh H. Malassezia (Pityrosporum) Folliculitis Masquerading As Recalcitrant Acne. Cureus. 2021. doi:10.7759/cureus.13534
  • Akaza N, Akamatsu H, Sasaki Y, et al. Malassezia folliculitis is caused by cutaneous resident Malassezia species. Med Mycol. 2009;47:618–624. doi:10.1080/13693780802398026
  • Ko J, Lee Y, Choe Y, Ahn K. Epidemiologic study of malassezia yeasts in patients with malassezia folliculitis by 26S rDNA PCR-RFLP analysis. Ann Dermatol. 2011;23:177. doi:10.5021/ad.2011.23.2.177
  • Nutten S. Atopic dermatitis: global epidemiology and risk factors. Ann Nutr Metab. 2015;66:8–16. doi:10.1159/000370220
  • Paller AS, Kong HH, Seed P, et al. The microbiome in patients with atopic dermatitis. J Allergy Clin Immunol. 2019;143(1):26. doi:10.1016/j.jaci.2018.11.015
  • Seité S, Flores G, Henley J, et al. Microbiome of affected and unaffected skin of patients with atopic dermatitis before and after emollient treatment. J Drugs Dermatol JDD. 2014;13:1365–1372.
  • Gonzalez M, Schaffer J, Orlow S, et al. Cutaneous microbiome effects of fluticasone propionate cream and adjunctive bleach baths in childhood atopic dermatitis. J Am Acad Dermatol. 2016;75:481–493.e8. doi:10.1016/j.jaad.2016.04.066
  • Oh J, Freeman A, Park M, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23:2103–2114. doi:10.1101/gr.159467.113
  • Tauber M, Balica S, Hsu CY, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016;137:1272–1274.e3. doi:10.1016/j.jaci.2015.07.052
  • Berube BJ, Wardenburg JB. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins. 2013;5:1140–1166. doi:10.3390/toxins5061140
  • Gonzalez T, Myers JBB, Herr A, Hershey GKK. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17. doi:10.1007/s11882-017-0750-x
  • Nakatsuji T, Chen TH, Two A, et al. Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression. J Invest Dermatol. 2016;136:2192–2200. doi:10.1016/j.jid.2016.05.127
  • Williams MR, Nakatsuji T, Sanford J, Vrbanac A, Gallo R. Staphylococcus aureus induces increased serine protease activity in keratinocytes. J Invest Dermatol. 2017;137:377–384. doi:10.1016/j.jid.2016.10.008
  • Brauweiler A, Goleva E, Leung D. Staphylococcus aureus lipoteichoic acid damages the skin barrier through an IL-1-Mediated Pathway. J Invest Dermatol. 2019;139:1753–1761.e4. doi:10.1016/j.jid.2019.02.006
  • Luthold RV, Fernandes GR, Franco-de-moraes AC, Folchetti LGD, Ferreira SRG. Gut microbiota interactions with the immunomodulatory role of vitamin D in normal individuals. Metabolism. 2017;69:76–86. doi:10.1016/j.metabol.2017.01.007
  • Cho S, Strickland I, Tomkinson A, Fehringer A, Gelfand E, Leung D. Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol. 2001;116:658–663. doi:10.1046/J.0022-202X.2001.01331.X
  • Nakatsuji T, Gallo R. The role of the skin microbiome in atopic dermatitis. Ann Allergy Asthma Immunol off Publ Am Coll Allergy Asthma Immunol. 2019;122:263–269. doi:10.1016/j.anai.2018.12.003
  • Miajlović H, Fallon P, Irvine A, Foster T. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010;126:1184–1190.e3. doi:10.1016/j.jaci.2010.09.015
  • Arikawa J, Ishibashi M, Kawashima M, Takagi Y, Ichikawa Y, Imokawa G. Decreased levels of sphingosine, a natural antimicrobial agent, may be associated with vulnerability of the stratum corneum from patients with atopic dermatitis to colonization by Staphylococcus aureus. J Invest Dermatol. 2002;119:433–439. doi:10.1046/J.1523-1747.2002.01846.X
  • Rippke F, Schreiner V, Doering T, Maibach H. Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with staphylococcus aureus. Am J Clin Dermatol. 2004;5:217–223. doi:10.2165/00128071-200405040-00002
  • Christoffersen C, Obinata H, Kumaraswamy SB, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci. 2011;108:9613–9618. doi:10.1073/pnas.1103187108
  • Brown S, McLean W. One remarkable molecule: filaggrin. J Invest Dermatol. 2012. doi:10.1038/jid.2011.393
  • Leung D, Guttman‐Yassky E. Deciphering the complexities of atopic dermatitis: shifting paradigms in treatment approaches. J Allergy Clin Immunol. 2014. doi:10.1016/j.jaci.2014.08.008
  • Howell M, Boguniewicz M, Pastore S, et al. Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol. 2006;121:332–338. doi:10.1016/J.CLIM.2006.08.008
  • Baker B. The role of microorganisms in atopic dermatitis. Clin Exp Immunol. 2006;144:1–9. doi:10.1111/j.1365-2249.2005.02980.x
  • Meilleur C, Wardell CM, Mele T, et al. Bacterial superantigens expand and activate, rather than delete or incapacitate, preexisting antigen-specific memory CD8+ T cells. J Infect Dis. 2019. doi:10.1093/infdis/jiy647
  • Takai T, Chen X, Xie Y, et al. TSLP expression induced via Toll-like receptor pathways in human keratinocytes. Methods Enzymol. 2014;535:371–387. doi:10.1016/B978-0-12-397925-4.00021-3
  • Takai T. TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int off J Jpn Soc Allergol. 2012. doi:10.2332/allergolint.11-RAI-0395
  • Williams MR, Nakatsuji T, Gallo R. Staphylococcus aureus: master Manipulator of the Skin. Cell Host Microbe. 2017;22:579–581. doi:10.1016/j.chom.2017.10.015
  • Wilson SR, Thé L, Batia LM, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP Activates neurons to induce itch. Cell. 2013;155:285–295. doi:10.1016/j.cell.2013.08.057
  • Sugita T, Tajima M, Tsubuku H, Tsuboi R, Nishikawa A. Quantitative analysis of cutaneous malassezia in atopic dermatitis patients using Real-Time PCR. Microbiol Immunol. 2006;50:549–552. doi:10.1111/j.1348-0421.2006.tb03825.x
  • Brodská P, Panzner P, Pizinger K, Schmid‐Grendelmeier P. IgE-Mediated sensitization to malassezia in atopic dermatitis: more common in male patients and in head and neck type. Dermat Contact Atopic Occup Drug. 2014. doi:10.1097/DER.0000000000000040
  • Svejgaard E, Larsen PØ, Deleuran M, Ternowitz T, Roed‐petersen J, Nilsson J. Treatment of head and neck dermatitis comparing itraconazole 200 mg and 400 mg daily for 1 week with placebo. J Eur Acad Dermatol Venereol JEADV. 2004;18:445–449. doi:10.1111/j.1468-3083.2004.00963.x
  • Sugita T, Suto H, Unno T, et al. Molecular analysis of malassezia microflora on the skin of atopic dermatitis patients and healthy subjects. J Clin Microbiol. 2001. doi:10.1128/JCM.39.10.3486-3490.2001
  • Selander C, Engblom C, Nilsson G, Scheynius A, Andersson C. TLR2/MyD88-dependent and -independent activation of mast Cell IgE Responses by the skin commensal yeast malassezia sympodialis. J Immunol. 2009;182:4208–4216. doi:10.4049/jimmunol.0800885
  • Lee YW, Lee SY, Lee Y, Jung WH. Evaluation of expression of lipases and phospholipases of malassezia restricta in patients with seborrheic dermatitis. Ann Dermatol. 2013;25(3):310–314. doi:10.5021/ad.2013.25.3.310
  • Dawson TL. Malassezia globosa and restricta: breakthrough understanding of the etiology and treatment of dandruff and seborrheic dermatitis through whole-genome analysis. J Investig Dermatol Symp Proc. 2007;12(2):15–19. doi:10.1038/sj.jidsymp.5650049
  • Sato H, Taketomi Y, Isogai Y, et al. Group III secreted phospholipase A2 transgenic mice spontaneously develop inflammation. Biochem J. 2009;421:17–27. doi:10.1042/BJ20082429
  • Ferreri C, Angelini F, Chatgilialoglu C, et al. Trans fatty acids and atopic eczema/dermatitis syndrome: the relationship with a free radical cis-trans isomerization of membrane lipids. Lipids. 2005;40:661–667. doi:10.1007/s11745-005-1428-7
  • Watanabe S, Kano R, Sato H, Nakamura Y, Hasegawa A. The effects of Malassezia yeasts on cytokine production by human keratinocytes. J Invest Dermatol. 2001;116:769–773. doi:10.1046/J.1523-1747.2001.01321.X
  • Mohandas V, Ballal M. Distribution of candida species in different clinical samples and their virulence: biofilm formation, proteinase and phospholipase production: a study on hospitalized patients in Southern India. J Glob Infect Dis. 2011. doi:10.4103/0974-777X.77288
  • De Bernardis F, Agatensi L, Ross IK, et al. Evidence for a role for secreted aspartate proteinase of Candida albicans in vulvovaginal candidiasis. J Infect Dis. 1990;161(6):1276–1283. doi:10.1093/infdis/161.6.1276
  • Moyes D, Wilson DW, Richardson J, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016. doi:10.1038/nature17625
  • Hanaoka M, Domae E. IL-1α released from oral epithelial cells upon candidalysin exposure initiates an early innate epithelial response. Int Immunol. 2020. doi:10.1093/intimm/dxaa070
  • König A, Hube B, Kasper L. The dual function of the fungal toxin candidalysin during candida albicans—macrophage interaction and virulence. Toxins. 2020;12. doi:10.3390/toxins12080469
  • Kasper L, König A, Koenig P, et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun. 2018;9. doi:10.1038/s41467-018-06607-1
  • Kato H, Sugita T, Ishibashi Y, Nishikawa A. Evaluation of the levels of specific ige against cryptococcus diffluens and cryptococcus liquefaciens in patients with atopic dermatitis. Microbiol Immunol. 2007;51:945–950. doi:10.1111/j.1348-0421.2007.tb03991.x
  • Faergemann J. Atopic Dermatitis and Fungi. Clin Microbiol Rev. 2002;15:545–563. doi:10.1128/CMR.15.4.545-563.2002
  • Javad G, Sarvtin MT, Hedayati M, Hajheydari Z, Yazdani J, Shokohi T. Evaluation of candida colonization and specific humoral responses against candida albicans in patients with atopic dermatitis. BioMed Res Int. 2015;2015:1–5. doi:10.1155/2015/849206
  • Ishiguro A, Homma M, Torii S, Tanaka K. Identification of Candida albicans antigens reactive with immunoglobulin E antibody of human sera. Infect Immun. 1992;60:1550–1557. doi:10.1128/iai.60.4.1550-1557.1992
  • Zhang E, Tanaka T, Tajima M, et al. Anti- malassezia -specific ige antibodies production in Japanese patients with head and neck atopic dermatitis: relationship between the level of specific ige antibody and the colonization frequency of cutaneous malassezia species and clinical severity. J Allergy. 2011;2011:1–5. doi:10.1155/2011/645670
  • Matsumura N, Aiba S, Tanaka M, et al. Comparison of immune reactivity profiles against various environmental allergens between adult patients with atopic dermatitis and patients with allergic respiratory diseases. Acta Derm Venereol. 1997;77:388–391. doi:10.2340/0001555577388391
  • Borda LJ, Perper M, Keri J. Treatment of seborrheic dermatitis: a comprehensive review. J Dermatol Treat. 2019;30:158–169. doi:10.1080/09546634.2018.1473554
  • Adalsteinsson J, Kaushik S, Muzumdar S, Guttman‐Yassky E, Ungar J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol. 2020;29:481–489. doi:10.1111/exd.14091
  • Clavaud C, Jourdain R, Bar-Hen A, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One. 2013;8. doi:10.1371/journal.pone.0058203
  • Rc S, Ph CP, Vc de M, et al. Dysbiotic bacterial and fungal communities not restricted to clinically affected skin sites in dandruff. Front Cell Infect Microbiol. 2016:6. doi:10.3389/fcimb.2016.00157
  • Carmona-Cruz S, Orozco‐Covarrubias L, Sáez-de-Ocariz M. The human skin microbiome in selected cutaneous diseases. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.834135
  • Kistowska M, Fenini G, Jankovic D, et al. Malassezia yeasts activate the NLRP 3 inflammasome in antigen-presenting cells via S yk-kinase signalling. Exp Dermatol. 2014;23:884–889. doi:10.1111/exd.12552
  • Schwartz J, Messenger A, Tosti A, et al. A comprehensive pathophysiology of dandruff and seborrheic dermatitis - towards a more precise definition of scalp health. Acta Derm Venereol. 2013;93:131–137. doi:10.2340/00015555-1382
  • Shi V, Leo MS, Hassoun L, Chahal D, Maibach H, Sivamani R. Role of sebaceous glands in inflammatory dermatoses. J Am Acad Dermatol. 2015;73:856–863. doi:10.1016/j.jaad.2015.08.015
  • Tanaka A, Cho O, Saito C, Saito M, Tsuboi R, Sugita T. Comprehensive pyrosequencing analysis of the bacterial microbiota of the skin of patients with seborrheic dermatitis. Microbiol Immunol. 2016;60:521–526. doi:10.1111/1348-0421.12398
  • DeAngelis YM, Gemmer C, Kaczvinsky J, Kenneally DC, Schwartz J, Dawson T. Three etiologic facets of dandruff and seborrheic dermatitis: malassezia fungi, sebaceous lipids, and individual sensitivity. J Investig Dermatol Symp Proc. 2005;10:295–297. doi:10.1111/J.1087-0024.2005.10119.X
  • Gaitanis G, Magiatis P, Stathopoulou K, et al. AhR ligands, malassezin, and Indolo[3, 2-b] carbazole are selectively produced by malassezia furfur strains isolated from seborrheic dermatitis. J Invest Dermatol. 2008;128(7):1620–1625. doi:10.1038/sj.jid.5701252
  • Dessinioti C, Katsambas A. Seborrheic dermatitis: etiology, risk factors, and treatments: facts and controversies. Clin Dermatol. 2013;31:343–351. doi:10.1016/j.clindermatol.2013.01.001
  • Tao R, Li R, Wang R. Skin microbiome alterations in seborrheic dermatitis and dandruff: a systematic review. Exp Dermatol. 2021;30:1546–1553. doi:10.1111/exd.14450
  • Tüzün Y, Wolf R, Baglam S, Engin B. Diaper (napkin) dermatitis: a fold (intertriginous) dermatosis. Clin Dermatol. 2015;33:477–482. doi:10.1016/j.clindermatol.2015.04.012
  • Sanders M, Pardo L, Franco O, Ginger RS, Nijsten T. Prevalence and determinants of seborrhoeic dermatitis in a middle‐aged and elderly population: the Rotterdam Study. Br J Dermatol. 2018;178:148–153. doi:10.1111/bjd.15908
  • Daou H, Paradiso M, Hennessy K, Seminario-Vidal L. Rosacea and the Microbiome: a Systematic Review. Dermatol Ther. 2020. doi:10.1007/s13555-020-00460-1
  • Kim HS. Microbiota in Rosacea. Am J Clin Dermatol. 2020;21(S1):25–35. doi:10.1007/s40257-020-00546-8
  • Solomon J, Tyring S, Staedtler G, Sand M, Nkulikiyinka R, Shakery K. Investigator-reported efficacy of azelaic acid foam 15% in patients with papulopustular rosacea: secondary efficacy outcomes from a randomized, controlled, double-blind, Phase 3 trial. Cutis. 2016;2016:1.
  • Ferrer L, Ravera I, Silbermayr K. Immunology and pathogenesis of canine demodicosis. Vet Dermatol. 2014;25:427. doi:10.1111/vde.12136
  • Yamasaki K, Nardo A, Bardan A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med. 2007;13:975–980. doi:10.1038/nm1616
  • Two A, Wu W, Gallo R, Hata T. Rosacea: part I. Introduction, categorization, histology, pathogenesis, and risk factors. J Am Acad Dermatol. 2015;72:761–770. doi:10.1016/j.jaad.2014.08.028
  • Moran EM, Foley R, Powell FC. Demodex and rosacea revisited. Clin Dermatol. 2017;35(2):195–200. doi:10.1016/j.clindermatol.2016.10.014
  • Osinaga E. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life. 2007;59(4–5):269–273. doi:10.1080/15216540601188553
  • Koller B, Müller-Wiefel AS, Rupec R, Korting HC, Ruzicka T. Chitin modulates innate immune responses of keratinocytes. PLoS One. 2011;6(2):e16594. doi:10.1371/journal.pone.0016594
  • Aktaş Karabay E, Aksu Çerman A. Demodex folliculorum infestations in common facial dermatoses: acne vulgaris, rosacea, seborrheic dermatitis. An Bras Dermatol. 2020;95:187–193. doi:10.1016/j.abd.2019.08.023
  • Ys C, Yc H. Role of Demodex mite infestation in rosacea: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(3). doi:10.1016/j.jaad.2017.03.040
  • Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157(3):474–481. doi:10.1111/j.1365-2133.2007.08028.x
  • Li J, O’Reilly N, Sheha H, et al. Correlation between ocular demodex infestation and serum immunoreactivity to bacillus proteins in patients with facial rosacea. Ophthalmology. 2010;117(5):870–877.e1. doi:10.1016/j.ophtha.2009.09.057
  • O’Reilly N, Menezes N, Kavanagh K. Positive correlation between serum immunoreactivity to Demodex-associated Bacillus proteins and erythematotelangiectatic rosacea. Br J Dermatol. 2012;167(5):1032–1036. doi:10.1111/j.1365-2133.2012.11114.x
  • Casas C, Paul C, Lahfa M, et al. Quantification of Demodex folliculorum by PCR in rosacea and its relationship to skin innate immune activation. Exp Dermatol. 2012;21(12):906–910. doi:10.1111/exd.12030
  • Allen JE, Sutherland TE, Rückerl D. IL-17 and neutrophils: unexpected players in the type 2 immune response. Curr Opin Immunol. 2015;34:99–106. doi:10.1016/j.coi.2015.03.001
  • Thompson KG, Rainer BM, Kang S, Chien AL. The skin microbiota as a link between rosacea and its systemic comorbidities. Int J Dermatol. 2020;59(4):513–514. doi:10.1111/ijd.14802
  • Fyhrquist N, Ruokolainen L, Suomalainen A, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation. J Allergy Clin Immunol. 2014;134(6):1301–1309.e11. doi:10.1016/j.jaci.2014.07.059
  • Brüggemann H, Henne A, Hoster F, et al. The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science. 2004;305:5684):671–673. doi:10.1126/science.1100330
  • Yu Y, Champer J, Agak GW, Kao S, Modlin RL, Kim J. Different propionibacterium acnes phylotypes induce distinct immune responses and express unique surface and secreted proteomes. J Invest Dermatol. 2016;136(11):2221–2228. doi:10.1016/j.jid.2016.06.615
  • Nagy I, Pivarcsi A, Kis K, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8(8):2195–2205. doi:10.1016/j.micinf.2006.04.001
  • Jin G, Kawsar HI, Hirsch SA, et al. An antimicrobial peptide regulates tumor-associated macrophage trafficking via the chemokine receptor CCR2, a model for tumorigenesis. PLoS One. 2010;5(6):e10993. doi:10.1371/journal.pone.0010993
  • Sass V, Schneider T, Wilmes M, et al. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun. 2010;78(6):2793–2800. doi:10.1128/IAI.00688-09
  • Agak GW, Qin M, Nobe J, et al. Propionibacterium acnes Induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol. 2014;134(2):366–373. doi:10.1038/jid.2013.334
  • Tomida S, Nguyen L, Chiu BH, et al. Pan-genome and comparative genome analyses of propionibacterium acnes reveal its genomic diversity in the healthy and diseased human skin microbiome. mBio. 2013;4(3):e00003–00013. doi:10.1128/mBio.00003-13
  • Bhate K, Williams HC. What’s new in acne? An analysis of systematic reviews published in 2011–2012. Clin Exp Dermatol. 2014;39(3):273–277; quiz 277–278. doi:10.1111/ced.12270
  • Akçınar UG, Ünal E, Doğruman Al F. Demodex spp. as a possible aetiopathogenic factor of acne and relation with acne severity and type. Postepy Dermatol Alergol. 2018;35(2):174–181. doi:10.5114/ada.2018.75239
  • Murillo N, Aubert J, Raoult D. Microbiota of Demodex mites from rosacea patients and controls. Microb Pathog. 2014;71–72:37–40. doi:10.1016/j.micpath.2014.04.002
  • Jarmuda S, O’Reilly N, Żaba R, Jakubowicz O, Szkaradkiewicz A, Kavanagh K. Potential role of Demodex mites and bacteria in the induction of rosacea. J Med Microbiol. 2012;61(11):1504–1510. doi:10.1099/jmm.0.048090-0
  • Gazi U, Taylan-Ozkan A, Mumcuoglu KY. Immune mechanisms in human and canine demodicosis: a review. Parasite Immunol. 2019;41(12):e12673. doi:10.1111/pim.12673
  • Elston CA, Elston DM. Demodex mites. Clin Dermatol. 2014;32(6):739–743. doi:10.1016/j.clindermatol.2014.02.012
  • Aytekin S, Göktay F, Yaşar Ş, Gizlenti S. Tips and tricks on Demodex density examination by standardized skin surface biopsy. J Eur Acad Dermatol Venereol JEADV. 2016;30(11):e126–e128. doi:10.1111/jdv.13402
  • Christensen GJM, Scholz CFP, Enghild J, et al. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genomics. 2016;17:152. doi:10.1186/s12864-016-2489-5
  • Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol. 2014;98(1):411–424. doi:10.1007/s00253-013-5394-8
  • Xia X, Li Z, Liu K, Wu Y, Jiang D, Lai Y. Staphylococcal LTA-Induced miR-143 Inhibits Propionibacterium acnes-Mediated Inflammatory Response in Skin. J Invest Dermatol. 2016;136(3):621–630. doi:10.1016/j.jid.2015.12.024
  • Wang Y, Kao MS, Yu J, et al. A Precision Microbiome Approach Using Sucrose for Selective Augmentation of Staphylococcus epidermidis Fermentation against Propionibacterium acnes. Int J Mol Sci. 2016;17(11):E1870. doi:10.3390/ijms17111870
  • Yang AJ, Marito S, Yang JJ, et al. A microtube array membrane (MTAM) encapsulated live fermenting staphylococcus epidermidis as a skin probiotic patch against cutibacterium acnes. Int J Mol Sci. 2018;20(1):E14. doi:10.3390/ijms20010014
  • Numata S, Akamatsu H, Akaza N, Yagami A, Nakata S, Matsunaga K. Analysis of facial skin-resident microbiota in Japanese acne patients. Dermatol Basel Switz. 2014;228(1):86–92. doi:10.1159/000356777
  • Akaza N, Akamatsu H, Takeoka S, et al. Malassezia globosa tends to grow actively in summer conditions more than other cutaneous Malassezia species. J Dermatol. 2012;39(7):613–616. doi:10.1111/j.1346-8138.2011.01477.x
  • Katsuta Y, Iida T, Inomata S, Denda M. Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J Invest Dermatol. 2005;124(5):1008–1013. doi:10.1111/j.0022-202X.2005.23682.x
  • Akaza N, Akamatsu H, Takeoka S, Mizutani H, Nakata S, Matsunaga K. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes. Med Mycol. 2012;50(8):802–810. doi:10.3109/13693786.2012.678019
  • Olejniczak-Staruch I, Ciążyńska M, Sobolewska-Sztychny D, Narbutt J, Skibińska M, Lesiak A. Alterations of the skin and gut microbiome in psoriasis and psoriatic arthritis. Int J Mol Sci. 2021;22:3998. doi:10.3390/ijms22083998
  • West C, Rydén P, Lundin D, Engstrand L, Tulic M, Prescott SL. Gut microbiome and innate immune response patterns in I g E -associated eczema. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2015;45:1419–1429. doi:10.1111/cea.12566
  • Suh SH, Choe K, Hong SP, et al. Gut microbiota regulates lacteal integrity by inducing VEGF‐C in intestinal villus macrophages. EMBO Rep. 2019;20. doi:10.15252/embr.201846927
  • Wang X, Zhao J, Qin L. VEGF-C mediated enhancement of lymphatic drainage reduces intestinal inflammation by regulating IL-9/IL-17 balance and improving gut microbiota in experimental chronic colitis. Am J Transl Res. 2017;2017:1.
  • Sun S, Luo L, Liang W, et al. Bifidobacterium alters the gut microbiota and modulates the functional metabolism of T regulatory cells in the context of immune checkpoint blockade. Proc Natl Acad Sci. 2020;117:27509–27515. doi:10.1073/pnas.1921223117
  • Veale DJ, Fearon U. The pathogenesis of psoriatic arthritis. Lancet Lond Engl. 2018;391(10136):2273–2284. doi:10.1016/S0140-6736(18)30830-4
  • Boehncke WH, Schön MP. Psoriasis. Lancet Lond Engl. 2015;386(9997):983–994. doi:10.1016/S0140-6736(14)61909-7
  • Tomi NS, Kränke B, Aberer E. Staphylococcal toxins in patients with psoriasis, atopic dermatitis, and erythroderma, and in healthy control subjects. J Am Acad Dermatol. 2005;53(1):67–72. doi:10.1016/j.jaad.2005.02.034
  • Fry L, Baker BS. Triggering psoriasis: the role of infections and medications. Clin Dermatol. 2007;25(6):606–615. doi:10.1016/j.clindermatol.2007.08.015
  • Nestle FO, Conrad C, Tun-Kyi A, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202(1):135–143. doi:10.1084/jem.20050500
  • Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8(4):345–350. doi:10.1038/ni0407-345
  • Baker B, Laman J, Powles A, et al. Peptidoglycan and peptidoglycan-specific Th1 cells in psoriatic skin lesions. J Pathol. 2006;209(2):174–181. doi:10.1002/path.1954
  • Liang X, Ou C, Zhuang J, et al. Interplay between skin microbiota dysbiosis and the host immune system in psoriasis: potential pathogenesis. Front Immunol. 2021;12:764384. doi:10.3389/fimmu.2021.764384
  • Leung DY, Travers JB, Giorno R, et al. Evidence for a streptococcal superantigen-driven process in acute guttate psoriasis. J Clin Invest. 1995;96(5):2106–2112. doi:10.1172/JCI118263
  • Sigmundsdottir H, Sigurgeirsson B, Troye-Blomberg M, Good MF, Valdimarsson H, Jonsdottir I. Circulating T cells of patients with active psoriasis respond to streptococcal M-peptides sharing sequences with human epidermal keratins. Scand J Immunol. 1997;45(6):688–697. doi:10.1046/j.1365-3083.1997.d01-438.x
  • Alekseyenko A, Perez-Perez G, De Souza A, et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome. 2013. doi:10.1186/2049-2618-1-31
  • Gao Z, Tseng Hong C, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3(7):e2719. doi:10.1371/journal.pone.0002719
  • Christensen G, Brüggemann H. Bacterial skin commensals and their role as host guardians. Benef Microbes. 2014;2:201–215. doi:10.3920/BM2012.0062
  • Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44(8):2933–2941. doi:10.1128/JCM.00785-06
  • Baroni A, Paoletti I, Ruocco E, Agozzino M, Tufano MA, Donnarumma G. Possible role of Malassezia furfur in psoriasis: modulation of TGF-beta1, integrin, and HSP70 expression in human keratinocytes and in the skin of psoriasis-affected patients. J Cutan Pathol. 2004;31(1):35–42. doi:10.1046/j.0303-6987.2004.0135.x
  • Singh-Jasuja H, Toes RE, Spee P, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med. 2000;191(11):1965–1974. doi:10.1084/jem.191.11.1965
  • Kashem S, Igyártó B, Gerami‐Nejad M, et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015;42:356–366. doi:10.1016/j.immuni.2015.01.008
  • Fischer N, Haug M, Kwok WW, et al. Involvement of CD91 and scavenger receptors in Hsp70-facilitated activation of human antigen-specific CD4+ memory T cells. Eur J Immunol. 2010;40(4):986–997. doi:10.1002/eji.200939738
  • Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol. 2002;2(3):185–194. doi:10.1038/nri749
  • Shao S, Chen J, Swindell W, et al. Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight. 2021;6. doi:10.1172/jci.insight.151911
  • Nakashima A, Tomono S, Yamazaki T, et al. Phospholipase A2 from Bee Venom Increases Poly(I:C)-induced Activation in Human Keratinocytes. Int Immunol. 2020;32:371–383. doi:10.1093/intimm/dxaa005
  • Maruyama K, Takayama Y, Kondo T, et al. Nociceptors boost the resolution of fungal osteoinflammation via the TRP Channel-CGRP-Jdp2 axis. Cell Rep. 2017;19:2730–2742. doi:10.1016/j.celrep.2017.06.002
  • Pietrzak A, Grywalska E, Socha M, et al. Prevalence and possible role of candida species in patients with psoriasis: a systematic review and meta-analysis. Mediators Inflamm. 2018;2018:1–7. doi:10.1155/2018/9602362
  • Kanda N, Tani K, Enomoto U, Nakai K, Watanabe S. The skin fungus-induced Th1- and Th2-related cytokine, chemokine and prostaglandin E 2 production in peripheral blood mononuclear cells from patients with atopic dermatitis and psoriasis vulgaris. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2002;32:1243–1250. doi:10.1046/j.1365-2745.2002.01459.x
  • Richardson J, Moyes D. Adaptive immune responses to Candida albicans infection. Virulence. 2015;6:327–337. doi:10.1080/21505594.2015.1004977
  • Conti H, Gaffen S. IL-17–mediated immunity to the opportunistic fungal pathogen candida albicans. J Immunol. 2015;195:780–788. doi:10.4049/jimmunol.1500909
  • Schlapbach C, Gehad A, Yang C, et al. Human T H 9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med. 2014;6. doi:10.1126/scitranslmed.3007828
  • Ruiz-Romeu E, Ferran M, de J-GC, et al. Microbe-Dependent Induction of IL-9 by CLA+ T Cells in Psoriasis and Relationship with IL-17A. J Invest Dermatol. 2018;138:580–587. doi:10.1016/j.jid.2017.08.048
  • de Jesús-Gil C, Sans-de San Nicolàs L, Ruiz-Romeu E, et al. Interplay between Humoral and CLA+ T cell response against candida albicans in psoriasis. Int J Mol Sci. 2021. doi:10.3390/ijms22041519
  • Atherton D. Understanding irritant napkin dermatitis. Int J Dermatol. 2016;55:7–9. doi:10.1111/ijd.13334
  • Petek TH, Petek M, Petek T, Varda NM. Emerging links between microbiome composition and skin immunology in diaper dermatitis: a narrative review. Children. 2022. doi:10.3390/children9010112
  • Coughlin C, Frieden I, Eichenfield L. Clinical approaches to skin cleansing of the diaper area: practice and challenges. Pediatr Dermatol. 2014;31:1–4. doi:10.1111/pde.12461
  • Campois TG, Zucoloto A, Araújo EJ, et al. Immunological and histopathological characterization of cutaneous candidiasis. J Med Microbiol. 2015;64:810–817. doi:10.1099/jmm.0.000095
  • Miller L, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11:505–518. doi:10.1038/nri3010
  • Rippke F, Berardesca E, Weber T. pH and microbial infections. Curr Probl Dermatol. 2018. doi:10.1159/000489522
  • Bernuth von H, Picard C, Jin Z, et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science. 2008. doi:10.1126/science.1158298
  • Picard C, Puel A, Bonnet M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299:2076–2079. doi:10.1126/science.1081902
  • Goto T, Yamashita A, Hirakawa H, et al. Complete genome sequence of finegoldia magna, an anaerobic opportunistic pathogen. DNA Res Int J Rapid Publ Rep Genes Genomes. 2008. doi:10.1093/dnares/dsm030
  • Mackenzie D. Effect of relative humidity on survival of candida albicans and other yeasts. Appl Microbiol. 1971;22:678–682. doi:10.1128/AEM.22.4.678-682.1971
  • King RD, Lee JC, Morris A. Adherence of candida albicans and other candida species to mucosal epithelial cells. Infect Immun. 1980;27:667–674. doi:10.1128/iai.27.2.667-674.1980
  • Visscher M, Adam R, Brink S, Odio M. Newborn infant skin: physiology, development, and care. Clin Dermatol. 2015;33:271–280. doi:10.1016/j.clindermatol.2014.12.003
  • Darmstadt G, Dinulos J, Miller Z. Congenital cutaneous candidiasis: clinical presentation, pathogenesis, and management guidelines. Pediatrics. 2000;105:438–444. doi:10.1542/PEDS.105.2.438
  • Perkins M, Osterhues M, Farage M, Robinson M. A noninvasive method to assess skin irritation and compromised skin conditions using simple tape adsorption of molecular markers of inflammation. Skin Res Technol off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging. 2001. doi:10.1034/j.1600-0846.2001.70405.x
  • Bartels NG, Lünnemann L, Stroux A, Kottner J, Serrano J, Blume-Peytavi U. Effect of diaper cream and wet wipes on skin barrier properties in infants: a prospective randomized controlled trial. Pediatr Dermatol. 2014. doi:10.1111/pde.12370
  • Ljubojević S, Skerlev M, Lipozenčić J, Basta-Juzbašić A. The role of Malassezia furfur in dermatology. Clin Dermatol. 2002;20:179–182. doi:10.1016/S0738-081X(01)00240-1
  • Poli F. Differential diagnosis of facial acne on black skin. Int J Dermatol. 2012;51 Suppl 1:24–26, 27–29. doi:10.1111/j.1365-4632.2012.05559.x
  • Durdu M, Güran M, Ilkit M. Epidemiological characteristics of malassezia folliculitis and use of the may-grünwald-giemsa stain to diagnose the infection. Diagn Microbiol Infect Dis. 2013;76:450–457. doi:10.1016/j.diagmicrobio.2013.04.011
  • Baroni A, Orlando M, Donnarumma G, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Arch Dermatol Res. 2005;297:280–288. doi:10.1007/s00403-005-0594-4
  • Faergemann J, Bergbrant IM, Dohsé M, Scott A, Westgate G. Seborrhoeic dermatitis and Pityrosporum (Malassezia) folliculitis: characterization of inflammatory cells and mediators in the skin by immunohistochemistry. Br J Dermatol. 2001;144(3):549–556. doi:10.1046/j.1365-2133.2001.04082.x
  • Levkovich T, Poutahidis T, Smillie C, et al. Probiotic bacteria induce a “glow of health. PLoS One. 2013;8(1):e53867. doi:10.1371/journal.pone.0053867
  • Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut. 2003;52(6):827–833. doi:10.1136/gut.52.6.827
  • Seth A, Yan F, Polk DB, Rao RK. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2008;294(4):G1060–1069. doi:10.1152/ajpgi.00202.2007
  • Polak K, Jobbágy A, Muszyński T, et al. Microbiome modulation as a therapeutic approach in chronic skin diseases. Biomedicines. 2021;9(10):1436. doi:10.3390/biomedicines9101436
  • Rusu E, Enache G, Cursaru R, et al. Prebiotics and probiotics in atopic dermatitis. Exp Ther Med. 2019;18(2):926–931. doi:10.3892/etm.2019.7678
  • Goodarzi A, Mozafarpoor S, Bodaghabadi M, Mohamadi M. The potential of probiotics for treating acne vulgaris: a review of literature on acne and microbiota. Dermatol Ther. 2020;33(3):e13279. doi:10.1111/dth.13279
  • Czechowicz P, Jaśkiewicz M, Neubauer D, Gościniak G, Kamysz W. Anticandidal activity of omiganan and its retro analog alone and in combination with fluconazole. Probiotics Antimicrob Proteins. 2021;13:1173–1182. doi:10.1007/s12602-021-09757-9
  • Niemeyer-van der Kolk T, Assil S, Buters TP, et al. Omiganan enhances imiquimod-induced inflammatory responses in skin of healthy volunteers. Clin Transl Sci. 2020;13(3):573–579. doi:10.1111/cts.12741
  • Rubinchik E, Dugourd D, Algara T, Pasetka C, Friedland HD. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents. 2009;34(5):457–461. doi:10.1016/j.ijantimicag.2009.05.003
  • Kim SG, Covington A, Pamer E. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev. 2017;279:90–105. doi:10.1111/imr.12563
  • Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553:7689):427–436. doi:10.1038/nature25177
  • Belkaid Y, Tamoutounour S. The influence of skin microorganisms on cutaneous immunity. Nat Rev Immunol. 2016;16(6):353–366. doi:10.1038/nri.2016.48
  • Zipperer A, Konnerth MC, Laux C, et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535(7613):511–516. doi:10.1038/nature18634
  • Myles IA, Williams KW, Reckhow JD, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10):86955. doi:10.1172/jci.insight.86955
  • Dubin G, Chmiel D, Mak P, Rakwalska M, Rzychon M, Dubin A. Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis. Biol Chem. 2001;382(11):1575–1582. doi:10.1515/BC.2001.192
  • Ekkelenkamp MB, Hanssen M, Danny Hsu ST, et al. Isolation and structural characterization of epilancin 15X, a novel lantibiotic from a clinical strain of Staphylococcus epidermidis. FEBS Lett. 2005;579(9):1917–1922. doi:10.1016/j.febslet.2005.01.083
  • Brauweiler A, Bin L, Kim B, et al. Filaggrin-dependent secretion of sphingomyelinase protects against staphylococcal α-toxin-induced keratinocyte death. J Allergy Clin Immunol. 2013;131:421–427.e2. doi:10.1016/j.jaci.2012.10.030
  • Brauweiler A, Goleva E, Leung D. Th2 cytokines increase Staphylococcus aureus alpha toxin induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J Invest Dermatol. 2014;134:2114–2121. doi:10.1038/jid.2014.43
  • Nakamura Y, Oscherwitz J, Cease K, et al. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503:397–401. doi:10.1038/nature12655
  • Classen A, Kalali B, Schnopp C, et al. TNF receptor I on human keratinocytes is a binding partner for staphylococcal protein A resulting in the activation of NF kappa B, AP‐1, and downstream gene transcription. Exp Dermatol. 2011;20:48–52. doi:10.1111/j.1600-0625.2010.01174.x
  • Jun S, Lee J, Kim SI, et al. Staphylococcus aureus -derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2017;47:85–96. doi:10.1111/cea.12851
  • Fleury OM, McAleer M, Feuillie C, et al. Clumping Factor B promotes adherence of staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun. 2017;85. doi:10.1128/IAI.00994-16
  • Kim JE, Kim HS. Microbiome of the skin and gut in atopic dermatitis (AD): understanding the pathophysiology and finding novel management strategies. J Clin Med. 2019. doi:10.3390/jcm8040444
  • Liu H, Archer N, Dillen C, et al. Staphylococcus aureus epicutaneous exposure drives skin Inflammation via IL-36-Mediated T cell responses. Cell Host Microbe. 2017;22:653–666.e5. doi:10.1016/j.chom.2017.10.006
  • Syed AK, Reed TJ, Clark KL, Boles BR, Kahlenberg JM. Staphlyococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation. Infect Immun. 2015. doi:10.1128/IAI.00401-15
  • Barac A, Pekmezovic M, Milobratovic D, Otasevic-Tasic S, Radunovic M, Arsic Arsenijevic V. Presence, species distribution, and density of Malassezia yeast in patients with seborrhoeic dermatitis - a community-based case-control study and review of literature. Mycoses. 2015;58(2):69–75. doi:10.1111/myc.12276
  • Clark G, Pope SM, Jaboori KA. Diagnosis and treatment of seborrheic dermatitis. Am Fam Physician. 2015;91:185–190.