47
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Unveiling Immune Infiltration Characterizing Genes in Hypertrophic Cardiomyopathy Through Transcriptomics and Bioinformatics

ORCID Icon, , ORCID Icon, ORCID Icon, &
Pages 3079-3092 | Received 11 Dec 2023, Accepted 01 May 2024, Published online: 18 May 2024

References

  • Tuohy CV, Kaul S, Song HK, Nazer B, Heitner SB. Hypertrophic cardiomyopathy: the future of treatment. European J of Heart Fail. 2020;22(2):228–240. doi:10.1002/ejhf.1715
  • Owens AT, Cappola TP. Recreational exercise in hypertrophic cardiomyopathy. JAMA. 2017;317(13):1319. doi:10.1001/jama.2017.2584
  • Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am College Cardiol. 2015;65(12):1249–1254. doi:10.1016/j.jacc.2015.01.019
  • Wooten EC, Hebl VB, Wolf MJ, et al. Formin homology 2 domain containing 3 variants associated with hypertrophic cardiomyopathy. Circ Cardiovasc Genet. 2013;6(1):10–18. doi:10.1161/CIRCGENETICS.112.965277
  • Lang. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(4):412. doi:10.1093/ehjci/jew041
  • Ito T, Suwa M. Echocardiographic tissue imaging evaluation of myocardial characteristics and function in cardiomyopathies. Heart Fail Rev. 2021;26(4):813–828. doi:10.1007/s10741-020-09918-y
  • Maron BJ, Rowin EJ, Maron MS. Paradigm of sudden death prevention in hypertrophic cardiomyopathy. Circ Res. 2019;125(4):370–378. doi:10.1161/CIRCRESAHA.119.315159
  • Saparov A, Ogay V, Nurgozhin T, et al. Role of the immune system in cardiac tissue damage and repair following myocardial infarction. Inflamm Res. 2017;66(9):739–751. doi:10.1007/s00011-017-1060-4
  • Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation. 1995;92(4):785–789. doi:10.1161/01.CIR.92.4.785
  • Chen CY, Lin LY, Lin YH, et al. P5269The impact of sarcomeric mutations on myocardial fibrosis and ventricular diastolic function in hypertrophic cardiomyopathy (SADS-TW HCM registry study). Euro Heart J. 2019;40(Supplement_1):ehz746. doi:10.1093/eurheartj/ehz746.0240
  • Fumagalli C, Fedele E, Beltrami M, et al. P1243Comparison of long-term clinical course and outcome of MYBPC3 - versus MYH7 - related hypertrophic cardiomyopathy. Euro Heart J. 2019;40(Supplement_1):ehz748. doi:10.1093/eurheartj/ehz748.0201
  • Van Den Akker F, Deddens JC, Doevendans PA, Sluijter JPG. Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochimica et Biophysica Acta. 2013;1830(2):2449–2458. doi:10.1016/j.bbagen.2012.08.026
  • Imanaka‐Yoshida K. Inflammation in myocardial disease: from myocarditis to dilated cardiomyopathy. Pathol Int. 2020;70(1):1–11. doi:10.1111/pin.12868
  • Frantz S, Hofmann U, Fraccarollo D, et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27(3):871–881. doi:10.1096/fj.12-214049
  • Bouchentouf M, Williams P, Forner KA, et al. Interleukin-2 enhances angiogenesis and preserves cardiac function following myocardial infarction. Blood. 2010;116(21):2786. doi:10.1182/blood.V116.21.2786.2786
  • Palomer X, Román-Azcona MS, Pizarro-Delgado J, et al. SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Sig Transduct Target Ther. 2020;5(1):14. doi:10.1038/s41392-020-0114-1
  • Lin YS, Chang TH, Ho WC, et al. Sarcomeres morphology and Z-line arrangement disarray induced by ventricular premature contractions through the Rac2/cofilin pathway. IJMS. 2021;22(20):11244. doi:10.3390/ijms222011244
  • Shimada YJ, Raita Y, Liang LW, et al. Comprehensive proteomics profiling reveals molecular pathways that are differentially regulated in hypertrophic cardiomyopathy and correlate with clinical markers of disease severity. Euro Heart J. 2021;42(Supplement_1):ehab724. doi:10.1093/eurheartj/ehab724.1777
  • Talaat IM, Elemam NM, Abdullah HW. CD68, CD86 and CD163 expression profile in breast cancer molecular subtypes. THE FASEB J. 2022;36(S1):1. doi:10.1096/fasebj.2022.36.S1.R3106
  • Ryabov V, Gombozhapova A, Rogovskaya Y, Kzhyshkowska J, Rebenkova M, Karpov R. Cardiac CD68+ and stabilin-1+ macrophages in wound healing following myocardial infarction: from experiment to clinic. Immunobiology. 2018;223(4–5):413–421. doi:10.1016/j.imbio.2017.11.006
  • Loi H, Kramar S, Laborde C, et al. Metformin attenuates postinfarction myocardial fibrosis and inflammation in mice. IJMS. 2021;22(17):9393. doi:10.3390/ijms22179393
  • Motta M, Shelvin B, Lerner S, Keating M, Wierda WG. Increased Expression of CD152 by normal T lymphocytes in untreated patients with B cell chronic lymphocytic leukemia. Blood. 2004;104(11):963. doi:10.1182/blood.V104.11.963.963
  • Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a box: understanding cardiomyocyte, fibroblast, and innate immune cell interactions to orchestrate cardiac repair processes. Front Cardiovasc Med. 2019;6:32. doi:10.3389/fcvm.2019.00032
  • Cai D, Holm JM, Duignan IJ, et al. BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiological Genomics. 2006;24(3):191–197. doi:10.1152/physiolgenomics.00165.2005
  • Zhang L, Jain MK. Circadian regulation of cardiac metabolism. J Clin Invest. 2021;131(15):e148276. doi:10.1172/JCI148276
  • Young ME, Brewer RA, Peliciari-Garcia RA, et al. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms. 2014;29(4):257–276. doi:10.1177/0748730414543141