3
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

The Increasing Diagnostic Role of Exosomes in Inflammatory Diseases to Leverage the Therapeutic Biomarkers

, , , &
Pages 5005-5024 | Received 23 Apr 2024, Accepted 11 Jul 2024, Published online: 25 Jul 2024

References

  • Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9(6):7204. doi:10.18632/oncotarget.23208
  • Shukla SD, Vanka KS, Chavelier A, et al. Chronic respiratory diseases: an introduction and need for novel drug delivery approaches. Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Elsevier. 2020;2020:1–31.
  • Halling ML, Kjeldsen J, Knudsen T, Nielsen J, Hansen LK. Patients with inflammatory bowel disease have increased risk of autoimmune and inflammatory diseases. World J Gastroenterol. 2017;23(33):6137. doi:10.3748/wjg.v23.i33.6137
  • Lampa J. Pain without inflammation in rheumatic diseases. Best Pract Res. 2019;33(3):101439. doi:10.1016/j.berh.2019.101439
  • Bennett JM, Reeves G, Billman GE, Sturmberg JP. Inflammation–nature’s way to efficiently respond to all types of challenges: implications for understanding and managing “the epidemic” of chronic diseases. Front Med. 2018;5:316. doi:10.3389/fmed.2018.00316
  • Goyette P, Labbé C, Trinh TT, Xavier RJ, Rioux JD. Molecular pathogenesis of inflammatory bowel disease: genotypes, phenotypes and personalized medicine. Anna Med. 2007;39(3):177–199. doi:10.1080/07853890701197615
  • Pedersen J, Coskun M, Soendergaard C, Salem M, Nielsen OH. Inflammatory pathways of importance for management of inflammatory bowel disease. World J Gastroenterol. 2014;20(1):64. doi:10.3748/wjg.v20.i1.64
  • Ocansey DK, Zhang L, Wang Y, et al. Exosome‐mediated effects and applications in inflammatory bowel disease. Biol. Rev. 2020;95(5):1287–1307. doi:10.1111/brv.12608
  • Wang C, Xu M, Fan Q, Li C, Zhou X. Therapeutic potential of exosome‐based personalized delivery platform in chronic inflammatory diseases. Asian J Pharm Sci. 2023;18(1):100772. doi:10.1016/j.ajps.2022.100772
  • Waqas MY, Javid MA, Nazir MM, et al. Extracellular vesicles and exosome: insight from physiological regulatory perspectives. J Physiol Biochem. 2022;78(3):573–580. doi:10.1007/s13105-022-00877-6
  • Thakur A, Ke X, Chen Y-W, et al. The mini player with diverse functions: extracellular vesicles in cell biology, disease, and therapeutics. Protein and Cell. 2022;13(9):631–654.
  • Gutiérrez‐Vázquez C, Villarroya‐Beltri C, Mittelbrunn M, Sánchez‐Madrid F. Transfer of extracellular vesicles during immune cell‐cell interactions. Immunol Rev. 2013;251(1):125–142. doi:10.1111/imr.12013
  • Chung I-M, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: current use and future applications. Clin Chim Acta. 2020;500:226–232. doi:10.1016/j.cca.2019.10.022
  • Dyball LE, Smales CM. Exosomes: biogenesis, targeting, characterization and their potential as Plug & Play” Vaccine Platforms. Biotechnol J. 2022;17(11):2100646.
  • Di Bella MA. Overview and update on extracellular vesicles: considerations on exosomes and their application in modern medicine. Biology. 2022;11(6):804. doi:10.3390/biology11060804
  • Rayner KJ, Hennessy EJ. Extracellular communication via microRNA: lipid particles have a new message. J Lipid Res. 2013;54(5):1174–1181. doi:10.1194/jlr.R034991
  • Taylor DD, Gercel-Taylor C. The origin, function, and diagnostic potential of RNA within extracellular vesicles present in human biological fluids. Front Genetics. 2013;4:142. doi:10.3389/fgene.2013.00142
  • Mahmoudi M, Taghavi Farahabadi M, Hashemi SM. Exosomes: mediators of immune regulation. Immunoregulation. 2019;2(1):3–8.
  • Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 2011;12(12):1659–1668. doi:10.1111/j.1600-0854.2011.01225.x
  • Kavya ANL, Subramanian S, Ramakrishna S. Therapeutic applications of exosomes in various diseases: a review. Biomat Advanc. 2022;134:112579. doi:10.1016/j.msec.2021.112579
  • Fleming A, Sampey G, Chung MC, et al. The carrying pigeons of the cell: exosomes and their role in infectious diseases caused by human pathogens. Pathog Dis. 2014;71(2):109–120. doi:10.1111/2049-632X.12135
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977. doi:10.1126/science.aau6977
  • Anastasiu CV, Moga MA, Elena Neculau A, et al. Biomarkers for the noninvasive diagnosis of endometriosis: state of the art and future perspectives. Int J Mol Sci. 2020;21(5):1750. doi:10.3390/ijms21051750
  • Gurunathan S, Kang M-H, Kim J-H. A comprehensive review on factors influences biogenesis, functions, therapeutic and clinical implications of exosomes. Int j Nanomed. 2021;1281–1312. doi:10.2147/IJN.S291956
  • Chan BD, Wong WY, Lee MML, et al. Exosomes in inflammation and inflammatory disease. Proteomics. 2019;19(8):1800149. doi:10.1002/pmic.201800149
  • Shenoda BB, Ajit SK. Modulation of immune responses by exosomes derived from antigen-presenting cells. Clin Med Insigh. 2016;9:S39925. doi:10.4137/CPath.S39925
  • Fais S, O’Driscoll L, Borras FE, et al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Publications; 2016.
  • Mellman I. Dendritic cells: master regulators of the immune response. Cancer Immunol Res. 2013;1(3):145–149. doi:10.1158/2326-6066.CIR-13-0102
  • Benites BD, Alvarez MC, Saad STO. Small particles, big effects: the interplay between exosomes and dendritic cells in antitumor immunity and immunotherapy. Cells. 2019;8(12):1648. doi:10.3390/cells8121648
  • Li Q, Wang H, Peng H, Huyan T, Cacalano NA. Exosomes: versatile nano mediators of immune regulation. Cancers. 2019;11(10):1557. doi:10.3390/cancers11101557
  • Chaput N, Flament C, Viaud S, et al. Dendritic cell derived-exosomes: biology and clinical implementations. J Leukoc Biol. 2006;80(3):471–478. doi:10.1189/jlb.0206094
  • Hosseini R, Asef-Kabiri L, Yousefi H, et al. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol Cancer. 2021;20(1):83. doi:10.1186/s12943-021-01376-w
  • Shahbaz SK, Sadeghi M, Koushki K, Penson PE, Sahebkar A. Regulatory T cells: possible mediators for the anti-inflammatory action of statins. Pharmacol Res. 2019;149:104469. doi:10.1016/j.phrs.2019.104469
  • Wang Y, Zhao M, Liu S, et al. Macrophage-derived extracellular vesicles: diverse mediators of pathology and therapeutics in multiple diseases. Cell Death Dis. 2020;11(10):924. doi:10.1038/s41419-020-03127-z
  • Hyvärinen K, Holopainen M, Skirdenko V, et al. Mesenchymal stromal cells and their extracellular vesicles enhance the anti-inflammatory phenotype of regulatory macrophages by downregulating the production of interleukin (IL)-23 and IL-22. Front Immunol. 2018;9:338017. doi:10.3389/fimmu.2018.00771
  • McDonald MK, Tian Y, Qureshi RA, et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain®. 2014;155(8):1527–1539. doi:10.1016/j.pain.2014.04.029
  • Whiteside TL. Evaluating tumor cell-and T cell-derived extracellular vesicles as potential biomarkers of cancer and immune cell competence. Exp Rev Molec Diagnost. 2023;23(2):109–122. doi:10.1080/14737159.2023.2178902
  • Zhao H, Liao X, Kang Y. Tregs: where we are and what comes next? Front Immunol. 2017;8:309575. doi:10.3389/fimmu.2017.01578
  • Tavasolian F, Hosseini AZ, Rashidi M, et al. The impact of immune cell-derived exosomes on immune response initiation and immune system function. Curr Pharm Des. 2021;27(2):197–205. doi:10.2174/18734286MTEyiMTQCy
  • Gaffen S, Hajishengallis G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J Dent Res. 2008;87(9):817–828. doi:10.1177/154405910808700908
  • Xiong -Y-Y, Gong Z-T, Tang R-J, Yang Y-J. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction. Theranostics. 2021;11(3):1046. doi:10.7150/thno.53326
  • Azimi M, Ghabaee M, Moghadasi AN, Noorbakhsh F, Izad M. Immunomodulatory function of Treg-derived exosomes is impaired in patients with relapsing-remitting multiple sclerosis. Immunol Res. 2018;66:513–520. doi:10.1007/s12026-018-9008-5
  • Jan AT, Rahman S, Badierah R, et al. Expedition into exosome biology: a perspective of progress from discovery to therapeutic development. Cancers. 2021;13(5):1157. doi:10.3390/cancers13051157
  • Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Theranostics. 2021;11(9):4436. doi:10.7150/thno.54004
  • Console L, Scalise M, Indiveri C. Exosomes in inflammation and role as biomarkers. Clin Chim Acta. 2019;488:165–171. doi:10.1016/j.cca.2018.11.009
  • Madhyastha R, Madhyastha H, Nurrahmah QI, Purbasari B, Maruyama M, Nakajima Y. MicroRNA 21 elicits a pro-inflammatory response in macrophages, with exosomes functioning as delivery vehicles. Inflammation. 2021;44:1274–1287. doi:10.1007/s10753-021-01415-0
  • Qiu Y, Li P, Zhang Z, Wu M. Insights into exosomal non-coding RNAs sorting mechanism and clinical application. Front Oncol. 2021;11:664904. doi:10.3389/fonc.2021.664904
  • Ti D, Hao H, Fu X, Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci. 2016;59:1305–1312. doi:10.1007/s11427-016-0240-4
  • Hu Y, Wang Y, Chen T, Hao Z, Cai L, Li J. Exosome: function and application in inflammatory bone diseases. Oxid Med Cell Longev. 2021;2021:1–17. doi:10.1155/2021/6324912
  • Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;113–120. doi:10.2147/JIR.S65979
  • Zhang H, Wang L, Chen D. Exosome-induced regulation in inflammatory bowel disease. Front Immunol. 2019;10:416673.
  • Poggi A, Benelli R, Venè R, et al. Human gut-associated natural killer cells in health and disease. Front Immunol. 2019;10:441580. doi:10.3389/fimmu.2019.00961
  • Tang D, Cao F, Fang K, et al. Extracellular vesicle/macrophage axis: potential targets for inflammatory disease intervention. Front Immunol. 2022;13:705472. doi:10.3389/fimmu.2022.705472
  • Shrivastava AK, Pandey A. Inflammation and rheumatoid arthritis. J Physiol Biochem. 2013;69:335–347. doi:10.1007/s13105-012-0216-5
  • Miao H-B, Wang F, Lin S, Chen Z. Update on the role of extracellular vesicles in rheumatoid arthritis. Expert Rev Molec Med. 2022;24:e12.
  • Park S, Bello A, Arai Y, et al. Functional duality of chondrocyte hypertrophy and biomedical application trends in osteoarthritis. Pharmaceutics. 2021;13(8):1139. doi:10.3390/pharmaceutics13081139
  • Chang T-H, C-S W, Chiou S-H, Chang C-H, Liao H-J. Adipose-derived stem cell exosomes as a novel anti-inflammatory agent and the current therapeutic targets for rheumatoid arthritis. Biomedicines. 2022;10(7):1725. doi:10.3390/biomedicines10071725
  • Saillaja AK. An overall review on chronic asthma. Internat J Pharmaceut Drug Anal. 2014;2014:275–279.
  • Sangaphunchai P, Todd I, Fairclough LC. Extracellular vesicles and asthma: a review of the literature. Clin Exp Immunol. 2020;50(3):291–307. doi:10.1111/cea.13562
  • Yang G, Waheed S, Wang C, Shekh M, Li Z, Wu J. Exosomes and their bioengineering strategies in the cutaneous wound healing and related complications: current knowledge and future perspectives. Int J Bio Sci. 2023;19(5):1430. doi:10.7150/ijbs.80430
  • Skuratovskaia D, Vulf M, Khaziakhmatova O, et al. Exosome limitations in the treatment of inflammatory diseases. Curr Pharm Des. 2021;27(28):3105–3121. doi:10.2174/1381612826666201210120444
  • Veziroglu EM, Mias GI. Characterizing extracellular vesicles and their diverse RNA contents. Front Genetics. 2020;11:558262.
  • Mishra A, Singh P, Qayoom I, Prasad A, Kumar A. Current strategies in tailoring methods for engineered exosomes and future avenues in biomedical applications. J Mat Chem B. 2021;9(32):6281–6309. doi:10.1039/D1TB01088C
  • Lu M, Yuan S, Li S, Li L, Liu M, Wan S. The exosome-derived biomarker in atherosclerosis and its clinical application. J Cardiovasc Translat Res. 2019;12(1):68–74. doi:10.1007/s12265-018-9796-y
  • Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochimica et Biophys Acta. 2012;1820(7):940–948. doi:10.1016/j.bbagen.2012.03.017
  • Chen J, Li P, Zhang T, et al. Review on strategies and technologies for exosome isolation and purification. Front Bioeng Biotechnol. 2022;9. doi:10.3389/fbioe.2021.811971
  • W-z L, Z-j M, X-w K. Current status and outlook of advances in exosome isolation. Anal Bioanal Chem. 2022;414(24):7123–7141. doi:10.1007/s00216-022-04253-7
  • Tayebi M, Yang D, Collins DJ, Ai Y. Deterministic sorting of submicrometer particles and extracellular vesicles using a combined electric and acoustic field. Nano Lett. 2021;21(16):6835–6842. doi:10.1021/acs.nanolett.1c01827
  • Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5(1):1–14. doi:10.1038/srep17319
  • Kuo WP, Jia S. Extracellular Vesicles: Methods and Protocols. Springer; 2017.
  • Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int. 2018;2018:1–27. doi:10.1155/2018/8545347
  • McNamara RP, Caro-Vegas CP, Costantini LM, et al. Large-scale, cross-flow based isolation of highly pure and endocytosis-competent extracellular vesicles. J Extracell Vesicles. 2018;7(1):1541396. doi:10.1080/20013078.2018.1541396
  • Gardiner C, Vizio DD, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5(1):32945. doi:10.3402/jev.v5.32945
  • Royo F, Théry C, Falcón-Pérez JM, Nieuwland R, Witwer KW. Methods for separation and characterization of extracellular vesicles: results of a worldwide survey performed by the ISEV rigor and standardization subcommittee. Cells. 2020;9(9):1955. doi:10.3390/cells9091955
  • Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomed Nanotechnol Biol Med. 2011;7(6):780–788. doi:10.1016/j.nano.2011.04.003
  • de Necochea-Campion R, Gonda A, Kabagwira J, et al. A practical approach to extracellular vesicle characterization among similar biological samples. Biomed Phys Eng Express. 2018;4(6):065013. doi:10.1088/2057-1976/aad6d8
  • Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6):1153. doi:10.3390/ijms18061153
  • Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4(1):25530. doi:10.3402/jev.v4.25530
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56(9):930. doi:10.1103/PhysRevLett.56.930
  • Zhu L, Sun H-T, Wang S, et al. Isolation and characterization of exosomes for cancer research. J Hematol Oncol. 2020;13(1):152.
  • Jahromi FNA, Dowran R, Jafari R. Recent advances in the roles of exosomal microRNAs (exomiRs) in hematologic neoplasms: pathogenesis, diagnosis, and treatment. Cell Commun Signal. 2023;21(1):88. doi:10.1186/s12964-023-01102-7
  • Spada S. Chapter 15 - Study of microRNAs carried by exosomes. In: Kepp O, Galluzzi L, editors. Methods in Cell Biology. Academic Press; 2021:187–197.
  • Zhang J, Li S, Li L, et al. Exosome and exosomal MicroRNA: trafficking, sorting, and function. Genom Prot Bioinf. 2015;13(1):17–24. doi:10.1016/j.gpb.2015.02.001
  • Guo M, Hao Y, Feng Y, et al. Microglial exosomes in neurodegenerative disease. Front Mol Neurosci. 2021;14:630808. doi:10.3389/fnmol.2021.630808
  • Mamdani H, Ahmed S, Armstrong S, Mok T, Jalal SI. Blood-based tumor biomarkers in lung cancer for detection and treatment. Translat Lung Can Res. 2017;6(6):648. doi:10.21037/tlcr.2017.09.03
  • Huda MN, Nafiujjaman M, Deaguero IG, et al. Potential use of exosomes as diagnostic biomarkers and in targeted drug delivery: progress in clinical and preclinical applications. ACS Biomater Sci Eng. 2021;7(6):2106–2149. doi:10.1021/acsbiomaterials.1c00217
  • Czernek L, Düchler M. Exosomes as messengers between mother and fetus in pregnancy. Int J Mol Sci. 2020;21(12):4264. doi:10.3390/ijms21124264
  • Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics. 2015;33:673–689. doi:10.1007/s40273-014-0243-x
  • Chen Y-S, Lin E-Y, Chiou T-W, Harn H-J. Exosomes in clinical trial and their production in compliance with good manufacturing practice. Tzu Chi Med J. 2020;32(2):113–120. doi:10.4103/tcmj.tcmj_182_19
  • Clemmens H, Lambert DW. Extracellular vesicles: translational challenges and opportunities. Biochem Soc Trans. 2018;46(5):1073–1082. doi:10.1042/BST20180112
  • Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochimica et Biophys Acta. 2014;1846(1):75–87. doi:10.1016/j.bbcan.2014.04.005
  • van der Meel R, Fens MH, Vader P, Van Solinge WW, Eniola-Adefeso O, Schiffelers RM. Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release. 2014;195:72–85. doi:10.1016/j.jconrel.2014.07.049
  • Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Delivery Rev. 2016;106:148–156. doi:10.1016/j.addr.2016.02.006
  • Syn NL, Wang L, Chow EK-H, Lim CT, Goh B-C. Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends Biotechnol. 2017;35(7):665–676. doi:10.1016/j.tibtech.2017.03.004
  • Datta A, Kim H, McGee L, et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci Rep. 2018;8(1):8161. doi:10.1038/s41598-018-26411-7
  • Heydari R, Koohi F, Rasouli M, et al. Exosomes as rheumatoid arthritis diagnostic biomarkers and therapeutic agents. Vaccines. 2023;11(3):687. doi:10.3390/vaccines11030687
  • Aheget H, Mazini L, Martin F, Belqat B, Marchal JA, Benabdellah K. Exosomes: their role in pathogenesis, diagnosis and treatment of diseases. Cancers. 2020;13(1):84. doi:10.3390/cancers13010084
  • Mirzaei R, Zamani F, Hajibaba M, et al. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol. 2021;358:577640. doi:10.1016/j.jneuroim.2021.577640
  • Wu X, Xu X, Xiang Y, et al. Exosome-mediated effects and applications in inflammatory diseases of the digestive system. Eur J Med Res. 2022;27(1):163. doi:10.1186/s40001-022-00792-y
  • Yang X, Xia H, Liu C, et al. The novel delivery-exosome application for diagnosis and treatment of rheumatoid arthritis. Pathol Res Pract. 2023;242:154332.
  • Ma X, Liu B, Fan L, et al. Native and engineered exosomes for inflammatory disease. Nano Res. 2023;16(5):6991–7006. doi:10.1007/s12274-022-5275-5
  • Ozansoy M, Mikati H, Velioglu HA, Yulug B. Exosomes: a missing link between chronic systemic inflammation and Alzheimer’s disease? Biomed. Pharmacother. 2023;159:114161. doi:10.1016/j.biopha.2022.114161
  • Han J, Zhang Y, Ge P, et al. Exosome-derived CIRP: an amplifier of inflammatory diseases. Front Immunol. 2023;14:1066721. doi:10.3389/fimmu.2023.1066721
  • Cervio E, Barile L, Moccetti T, Vassalli G. Exosomes for intramyocardial intercellular communication. Stem Cells Internat. 2015;2015:1–10. doi:10.1155/2015/482171
  • Cheng C, Wang Q, You W, Chen M, Xia J. MiRNAs as biomarkers of myocardial infarction: a meta-analysis. PLoS One. 2014;9(2):e88566. doi:10.1371/journal.pone.0088566
  • Hergenreider E, Heydt S, Tréguer K, et al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012;14(3):249–256. doi:10.1038/ncb2441
  • Rupp A-K, Rupp C, Keller S, et al. Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecologic Oncol. 2011;122(2):437–446. doi:10.1016/j.ygyno.2011.04.035
  • Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular Cell. 2010;39(1):133–144. doi:10.1016/j.molcel.2010.06.010
  • Caby M-P, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Internat Immunol. 2005;17(7):879–887. doi:10.1093/intimm/dxh267
  • André F, Chaput N, Schartz N, et al. Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol. 2004;172(4):2126–2136. doi:10.4049/jimmunol.172.4.2126
  • Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–1614. doi:10.1038/mt.2010.105
  • Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–1972. doi:10.1038/jcbfm.2012.126
  • Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release. 2015;207:18–30. doi:10.1016/j.jconrel.2015.03.033
  • Ebadi M, Srinivasan SK, Baxi MD. Oxidative stress and antioxidant therapy in Parkinson’s disease. Prog Neurobiol. 1996;48(1):1–19. doi:10.1016/0301-0082(95)00029-1
  • Ambani LM, Van Woert MH, Murphy S. Brain peroxidase and catalase in Parkinson disease. Arch Neurol. 1975;32(2):114–118. doi:10.1001/archneur.1975.00490440064010
  • Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B. 2016;6(4):287–296. doi:10.1016/j.apsb.2016.02.001
  • Wu G, Zhang J, Zhao Q, et al. Molecularly engineered macrophage‐derived exosomes with inflammation tropism and intrinsic heme biosynthesis for atherosclerosis treatment. Angew Chem. 2020;132(10):4097–4103. doi:10.1002/ange.201913700
  • Li H, Feng Y, Zheng X, et al. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release. 2022;341:16–30. doi:10.1016/j.jconrel.2021.11.019
  • Liu Y, Zeng Y, Si H-B, Tang L, Xie H-Q, Shen B. Exosomes derived from human urine–derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model. Am J Spor Med. 2022;50(4):1088–1105. doi:10.1177/03635465221073991
  • Qiu B, Xu X, Yi P, Hao Y. Curcumin reinforces MSC‐derived exosomes in attenuating osteoarthritis via modulating the miR‐124/NF‐kB and miR‐143/ROCK1/TLR9 signalling pathways. J Cell & Mol Med. 2020;24(18):10855–10865. doi:10.1111/jcmm.15714
  • Sun L, He X, Zhang T, Han Y, Tao G. Knockdown of mesenchymal stem cell‑derived exosomal LOC100129516 suppresses the symptoms of atherosclerosis via upregulation of the PPARγ/LXRα/ABCA1 signaling pathway Corrigendum in/. IntJ Mol Med. 2021;48(6):1–11. doi:10.3892/ijmm.2021.5041
  • Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 2018;41(6):835–842. doi:10.1248/bpb.b18-00133
  • Ramirez MI, Amorim MG, Gadelha C, et al. Technical challenges of working with extracellular vesicles. Nanoscale. 2018;10(3):881–906. doi:10.1039/C7NR08360B
  • Wang Y, Zhang L, Li Y, et al. Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol. 2015;192:61–69. doi:10.1016/j.ijcard.2015.05.020
  • Li X, Corbett AL, Taatizadeh E, et al. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng. 2019;3(1):011503. doi:10.1063/1.5087122
  • Witwer KW, Buzás EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2(1):20360. doi:10.3402/jev.v2i0.20360
  • Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6(1):36162. doi:10.1038/srep36162
  • Lai JJ, Chau ZL, Chen SY, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci. 2022;9(15):e2103222. doi:10.1002/advs.202103222
  • Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signaling. 2022;20(1):145. doi:10.1186/s12964-022-00959-4
  • Cheng K, Kalluri R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. Extracellular Vesicle. 2023;2:100029. doi:10.1016/j.vesic.2023.100029
  • Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–1779. doi:10.1038/mt.2011.164
  • Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in cancer: diagnostic and therapeutic applications. Clin Med Insights Oncol. 2024;18:11795549231215966. doi:10.1177/11795549231215966
  • Muthu S, Bapat A, Jain R, Jeyaraman N, Jeyaraman M. Exosomal therapy-a new frontier in regenerative medicine. Stem Cell Investig. 2021;8:7. doi:10.21037/sci-2020-037
  • Wang X, Xia J, Yang L, Dai J, He L. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Genet Ther. 2023;30(8):1051–1065. doi:10.1038/s41417-023-00617-y
  • Sharma V, Mukhopadhyay CD. Exosome as drug delivery system: current advancements. Extracellular Vesicle. 2024;3:100032. doi:10.1016/j.vesic.2023.100032
  • Klingeborn M, Dismuke WM, Rickman CB, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retinal Eye Res. 2017;59:158–177. doi:10.1016/j.preteyeres.2017.04.004
  • Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases. Int J Nanomed. 2023;18:4751–4778. doi:10.2147/IJN.S417422
  • Cazzola M, Ferraris S, Boschetto F, et al. Green tea polyphenols coupled with a bioactive titanium alloy surface: in vitro characterization of osteoinductive behavior through a KUSA A1 cell study. Int J Mol Sci. 2018;19(8):2255. doi:10.3390/ijms19082255
  • Venugopal J, Rajeswari R, Shayanti M, et al. Xylan polysaccharides fabricated into nanofibrous substrate for myocardial infarction. Mater Sci Eng C. 2013;33(3):1325–1331. doi:10.1016/j.msec.2012.12.032