509
Views
2
CrossRef citations to date
0
Altmetric
Original Research

A Deep Learning Model to Predict Knee Osteoarthritis Based on Nonimage Longitudinal Medical Record

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2477-2485 | Published online: 11 Sep 2021

References

  • Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk. Nat Publ Gr. 2016;12(11):632–644. doi:10.1038/nrrheum.2016.148
  • Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–1602. doi:10.1016/S0140-6736(16)31678-6
  • Lin FH, Chen HC, Lin C, et al. The increase in total knee replacement surgery in Taiwan A 15-year retrospective study. Medicine. 2018;97:31. doi:10.1097/MD.0000000000011749
  • Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26(3):355–369. doi:10.1016/j.cger.2010.03.001
  • Felson DT, Zhang Y. An Update on the Epidemiology of Knee and Hip Osteoarthritis with a View to Prevention. Vol. 41. American College of Rheumatology; 1998.
  • Kim H-A, Kim S, Seo YI, et al. The epidemiology of total knee replacement in South Korea: national registry data. Rheumatology. 2008;47(1):88–91. doi:10.1093/rheumatology/kem308
  • Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Rheum Dis Clin North Am. 2008;34(3):515–529. doi:10.1016/j.rdc.2008.05.007
  • Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr Cartil. 2015;23(4):507–515. doi:10.1016/j.joca.2014.11.019
  • Driban JB, Hootman JM, Sitler MR, Harris KP, Cattano NM. Is participation in certain sports associated with knee osteoarthritis? A systematic review. J Athl Train. 2017;52(6):497–506. doi:10.4085/1062-6050-50.2.08
  • Ezzat AM, Li LC. Occupational physical loading tasks and knee osteoarthritis: a review of the evidence. Physiother Canada. 2014;66(1):91–107. doi:10.3138/ptc.2012-45BC
  • Yeh Y-T, Liang -C-C, Chang C-L, Hsu C-Y, Li P-C. Increased risk of knee osteoarthritis in patients using oral N-acetylcysteine: a nationwide cohort study. BMC Musculoskelet Disord. 2020;21(1):1–8. doi:10.1186/s12891-020-03562-1
  • Hippisley-Cox J, Coupland C. Development and validation of risk prediction algorithms to estimate future risk of common cancers in men and women: prospective cohort study. BMJ Open. 2015;5(3):e007825. doi:10.1136/BMJOPEN-2015-007825
  • Cheng Y, Wang F, Zhang P, Hu J. Risk prediction with electronic health records: a deep learning approach. In: Venkatasubramanian SC, Meira W, Eds. 16th SIAM International Conference on Data Mining 2016, SDM 2016. Society for Industrial and Applied Mathematics Publications; 2016:432–440. doi:10.1137/1.9781611974348.49
  • Goldstein BA, Navar AM, Pencina MJ, Ioannidis JPA, Goldstein B. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inform Assoc. 2017;24(1):198–208. doi:10.1093/jamia/ocw042
  • Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N, Liu B. Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One. 2017;12(4):e0174944. doi:10.1371/JOURNAL.PONE.0174944
  • Hill NR, Sandler B, Mokgokong R, et al. Cost-effectiveness of targeted screening for the identification of patients with atrial fibrillation: evaluation of a machine learning risk prediction algorithm. J Med Econ. 2020;23(4):386–393. doi:10.1080/13696998.2019.1706543
  • Jiang Y, Li C. Review article convolutional neural networks for image-based high-throughput plant phenotyping: a review. Plant Phenomics. 2020;2020:1–22. doi:10.34133/2020/4152816
  • Ramesh AN, Kambhampati C, Monson J, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004;86(5):334–338. doi:10.1308/147870804290
  • Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: a review. Osteoarthr Cartil Open. 2020;2(3):100069. doi:10.1016/j.ocarto.2020.100069
  • Wang -H-H, Wang Y-H, Liang C-W, Li Y-C. Assessment of deep learning using nonimaging information and sequential medical records to develop a prediction model for nonmelanoma skin cancer. JAMA Dermatol. 2019;155(11):1277. doi:10.1001/jamadermatol.2019.2335
  • Wang Y-H, Nguyen P-A, Islam MM, Li Y-C, Yang H-C. Development of deep learning algorithm for detection of colorectal cancer in EHR data. Stud Health Technol Inform. 2019;264:438–441. doi:10.3233/SHTI190259
  • Nur Anggraini Ningrum D, S-p Y, Kung W-M, et al. Deep learning classifier with patient’s metadata of dermoscopic images in malignant melanoma detection. J Multidiscip Healthc. 2021;14:877. doi:10.2147/JMDH.S306284
  • Syed-Abdul S, Moldovan M, Nguyen P-A, et al. Profiling phenome-wide associations: a population-based observational study: table 1. J Am Med Inform Assoc. 2015;22(4):896–899. doi:10.1093/jamia/ocu019
  • Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–629. doi:10.1007/S13244-018-0639-9
  • Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230. doi:10.1136/SVN-2017-000101
  • Donoghue C, Rao A, Bull AMJ, Rueckert D. Manifold learning for automatically predicting articular cartilage morphology in the knee with data from the osteoarthritis initiative (OAI). In: Medical Imaging 2011: Image Processing. Vol 7962. SPIE; 2011:79620E. doi:10.1117/12.878266
  • Du Y, Shan J, Zhang M. Knee osteoarthritis prediction on MR images using cartilage damage index and machine learning methods. In: Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017. Vol 2017-January; Institute of Electrical and Electronics Engineers Inc.; 2017:671–677. doi:10.1109/BIBM.2017.8217734
  • Marques J, Genant HK, Lillholm M, Dam EB. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI. Magn Reson Med. 2013;70(2):568–575. doi:10.1002/mrm.24477
  • Pedoia V, Haefeli J, Morioka K, et al. MRI and biomechanics multidimensional data analysis reveals R2-R1ρ as an early predictor of cartilage lesion progression in knee osteoarthritis. J Magn Reson Imaging. 2018;47(1):78–90. doi:10.1002/jmri.25750
  • Tiulpin A, Klein S, Bierma-Zeinstra SMA, et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci Rep. 2019;9(1):1. doi:10.1038/s41598-019-56527-3
  • Lazzarini YZN, Runhaar ZXJ, Bay-Jensen ZKAC, et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthr Cartil. 2017;25:2014–2021. doi:10.1016/j.joca.2017.09.001
  • Wang H, Cheng Y, Shao D, et al. Metabolic syndrome increases the risk for knee osteoarthritis: a meta-analysis. Evid Based Complement Alternat Med. 2016;2016:7242478. doi:10.1155/2016/7242478