185
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Recent Advances in Vitamin D3 Intervention to Eradicate Helicobacter pylori Infection

ORCID Icon, , &
Pages 825-832 | Received 15 Dec 2023, Accepted 13 Feb 2024, Published online: 25 Feb 2024

References

  • Burgard M, Kotilea K, Mekhael J, et al. Evolution of Helicobacter pylori associated with gastroduodenal ulcers or erosions in children over the past 23 years: decline or steady state? Helicobacter. 2019;24(5):e12629. doi:10.1111/hel.12629
  • Zhang Y, Lai Z, Wang J. 幽门螺杆菌感染患者胃黏膜组织学炎症评价依据及诊断标准的探讨 [Helicobacter pylori associated gastric mucosal inflammation and histopathological assessment]. Zhonghua Yi Xue Za Zhi. 2001;81(13):811–815. Chinese.
  • Le LTT, Nguyen TA, Nguyen NA, et al. Antibiotic resistance of helicobacter pylori in children with gastritis and peptic ulcers in Mekong Delta, Vietnam. Healthcare. 2022;10:6.
  • Ren S, Cai P, Liu Y, et al. Prevalence of Helicobacter pylori infection in China: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2022;37(3):464–470. doi:10.1111/jgh.15751
  • Wen X, Wen D, Yang Y, Chen Y, Wang G, Shan B. Urban-rural disparity in helicobacter pylori infection-related upper gastrointestinal cancer in china and the decreasing trend in parallel with socioeconomic development and urbanization in an endemic area. Ann Glob Health. 2017;83(3–4):444–462. doi:10.1016/j.aogh.2017.09.004
  • Yuan C, Adeloye D, Luk TT, et al. The global prevalence of and factors associated with Helicobacter pylori infection in children: a systematic review and meta-analysis. Lancet Child Adolesc Health. 2022;6(3):185–194. doi:10.1016/S2352-4642(21)00400-4
  • Xu C, Wu Y, Xu S. Association between Helicobacter pylori infection and growth outcomes in children: a meta‐analysis. Helicobacter. 2022;27(1). doi:10.1111/hel.12861
  • Ma PF, Dai Q, Chu J, et al. 25-hydroxyvitamin D levels in children of different ages and with varying degrees of Helicobacter pylori infection and immunological features. Front Pediatr. 2023;11:1157777. doi:10.3389/fped.2023.1157777
  • El Shahawy MS, Shady ZM, Gaafar A. Influence of adding vitamin D3 to standard clarithromycin-based triple therapy on the eradication rates of Helicobacter pylori infection. Arab J Gastroenterol. 2021;22(3):209–214. doi:10.1016/j.ajg.2021.08.002
  • Mut Surmeli D, Surmeli ZG, Bahsi R, et al. Vitamin D deficiency and risk of Helicobacter pylori infection in older adults: a cross-sectional study. Aging Clin Exp Res. 2019;31(7):985–991. doi:10.1007/s40520-018-1039-1
  • Soares TF, Rocha GA, Rocha AM, et al. Phenotypic study of peripheral blood lymphocytes and humoral immune response in Helicobacter pylori infection according to age. Scand J Immunol. 2005;62(1):63–70. doi:10.1111/j.1365-3083.2005.01638.x
  • Jafarzadeh A, Larussa T, Nemati M, Jalapour S. T cell subsets play an important role in the determination of the clinical outcome of Helicobacter pylori infection. Microb Pathog. 2018;116:227–236. doi:10.1016/j.micpath.2018.01.040
  • Ansari S, Yamaoka Y. Animal models and helicobacter pylori infection. J Clin Med. 2022;11(11):3141. doi:10.3390/jcm11113141
  • Maciorkowska E, Kaczmarski M, Stasiak-Barmuta A, et al. Peripheral blood lymphocyte population in children infected with Helicobacter pylori. Rocz Akad Med Bialymst. 2003;48:95–99.
  • Sipponen P, Maaroos HI. Chronic gastritis. Scand J Gastroenterol. 2015;50(6):657–667. doi:10.3109/00365521.2015.1019918
  • Wilson KT, Crabtree JE. Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology. 2007;133(1):288–308. doi:10.1053/j.gastro.2007.05.008
  • Adorini L, Penna G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum Immunol. 2009;70(5):345–352. doi:10.1016/j.humimm.2009.01.016
  • Bah SY, Dickinson P, Forster T, Kampmann B, Ghazal P. Immune oxysterols: role in mycobacterial infection and inflammation. J Steroid Biochem Mol Biol. 2017;169:152–163. doi:10.1016/j.jsbmb.2016.04.015
  • Wu S, Liao AP, Xia Y, et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J Pathol. 2010;177(2):686–697. doi:10.2353/ajpath.2010.090998
  • Baeke F, Korf H, Overbergh L, et al. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system. J Steroid Biochem Mol Biol. 2010;121(1–2):221–227. doi:10.1016/j.jsbmb.2010.03.037
  • Hafkamp FMJ, Taanman-Kueter EWM, van Capel TMM, Kormelink TG, de Jong EC. Vitamin D3 priming of dendritic cells shifts human neutrophil-dependent Th17 cell development to regulatory T cells. Front Immunol. 2022;13:872665. doi:10.3389/fimmu.2022.872665
  • Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167(9):4974–4980. doi:10.4049/jimmunol.167.9.4974
  • D’Ambrosio D, Cippitelli M, Cocciolo MG, et al. Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest. 1998;101(1):252–262. doi:10.1172/JCI1050
  • Chang SH, Chung Y, Dong C. Vitamin D suppresses Th17 cytokine production by inducing C/EBP homologous protein (CHOP) expression. J Biol Chem. 2010;285(50):38751–38755. doi:10.1074/jbc.C110.185777
  • Hamzaoui A, Berraies A, Hamdi B, Kaabachi W, Ammar J, Hamzaoui K. Vitamin D reduces the differentiation and expansion of Th17 cells in young asthmatic children. Immunobiology. 2014;219(11):873–879. doi:10.1016/j.imbio.2014.07.009
  • Serrano C, Wright SW, Bimczok D, et al. Downregulated Th17 responses are associated with reduced gastritis in Helicobacter pylori-infected children. Mucosal Immunol. 2013;6(5):950–959. doi:10.1038/mi.2012.133
  • Shi Y, Liu XF, Zhuang Y, et al. Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol. 2010;184(9):5121–5129. doi:10.4049/jimmunol.0901115
  • Dimitrov V, White JH. Species-specific regulation of innate immunity by vitamin D signaling. J Steroid Biochem Mol Biol. 2016;164:246–253. doi:10.1016/j.jsbmb.2015.09.016
  • Clark A, Mach N. Role of vitamin D in the hygiene hypothesis: the interplay between vitamin D, vitamin D receptors, gut microbiota, and immune response. Front Immunol. 2016;7:627. doi:10.3389/fimmu.2016.00627
  • Lee CC, Sun Y, Qian S, Huang HW. Transmembrane pores formed by human antimicrobial peptide LL-37. Biophys J. 2011;100(7):1688–1696. doi:10.1016/j.bpj.2011.02.018
  • Wehkamp J, Schauber J, Stange EF. Defensins and cathelicidins in gastrointestinal infections. Curr Opin Gastroenterol. 2007;23(1):32–38. doi:10.1097/MOG.0b013e32801182c2
  • Zhu Y, Mohapatra S, Weisshaar JC. Rigidification of the Escherichia coli cytoplasm by the human antimicrobial peptide LL-37 revealed by superresolution fluorescence microscopy. Proc Natl Acad Sci U S A. 2019;116(3):1017–1026. doi:10.1073/pnas.1814924116
  • Zhang L, Wu WK, Gallo RL, et al. Critical role of antimicrobial peptide cathelicidin for controlling helicobacter pylori survival and infection. J Immunol. 2016;196(4):1799–1809. doi:10.4049/jimmunol.1500021
  • Zhang L, Yu J, Wong CC, et al. Cathelicidin protects against Helicobacter pylori colonization and the associated gastritis in mice. Gene Ther. 2013;20(7):751–760. doi:10.1038/gt.2012.92
  • Chung C, Silwal P, Kim I, Modlin RL, Jo EK. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020;20(2):e12. doi:10.4110/in.2020.20.e12
  • Steinmann J, Halldorsson S, Agerberth B, Gudmundsson GH. Phenylbutyrate induces antimicrobial peptide expression. Antimicrob Agents Chemother. 2009;53(12):5127–5133. doi:10.1128/AAC.00818-09
  • Slominski AT, Kim TK, Takeda Y, et al. RORalpha and ROR gamma are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J. 2014;28(7):2775–2789. doi:10.1096/fj.13-242040
  • Wang TT, Dabbas B, Laperriere D, et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. 2010;285(4):2227–2231. doi:10.1074/jbc.C109.071225
  • Liu PT, Schenk M, Walker VP, et al. Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One. 2009;4(6):e5810. doi:10.1371/journal.pone.0005810
  • Schneider JJ, Unholzer A, Schaller M, Schafer-Korting M, Korting HC. Human defensins. J Mol Med. 2005;83(8):587–595. doi:10.1007/s00109-005-0657-1
  • Andresen E, Gunther G, Bullwinkel J, Lange C, Heine H, Idzko M. Increased expression of beta-defensin 1 (DEFB1) in chronic obstructive pulmonary disease. PLoS One. 2011;6(7):e21898. doi:10.1371/journal.pone.0021898
  • Pero R, Coretti L, Nigro E, et al. Beta-defensins in the fight against helicobacter pylori. Molecules. 2017;22(3):424. doi:10.3390/molecules22030424
  • Nuding S, Gersemann M, Hosaka Y, et al. Gastric antimicrobial peptides fail to eradicate Helicobacter pylori infection due to selective induction and resistance. PLoS One. 2013;8(9):e73867. doi:10.1371/journal.pone.0073867
  • Cullen TW, Giles DK, Wolf LN, Ecobichon C, Boneca IG, Trent MS. Helicobacter pylori versus the host: remodeling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathog. 2011;7(12):e1002454. doi:10.1371/journal.ppat.1002454
  • Pero R, Angrisano T, Brancaccio M, et al. Beta-defensins and analogs in Helicobacter pylori infections: mRNA expression levels, DNA methylation, and antibacterial activity. PLoS One. 2019;14(9):e0222295. doi:10.1371/journal.pone.0222295
  • Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol. 2005;77(4):466–475. doi:10.1189/jlb.0804452
  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3(9):710–720. doi:10.1038/nri1180
  • Sass V, Schneider T, Wilmes M, et al. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun. 2010;78(6):2793–2800. doi:10.1128/IAI.00688-09
  • Grady LT, Thakker KD. Stability of solid drugs: degradation of ergocalciferol (vitamin D2) and cholecalciferol (vitamin D3) at high humidities and elevated temperatures. J Pharm Sci. 1980;69(9):1099–1102. doi:10.1002/jps.2600690932
  • Hosoda K, Shimomura H, Wanibuchi K, et al. Identification and characterization of a vitamin D(3) decomposition product bactericidal against Helicobacter pylori. Sci Rep. 2015;5(1):8860. doi:10.1038/srep08860
  • Amgalanbaatar A, Shimomura H, Hosoda K, Hayashi S, Yokota K, Hirai Y. Antibacterial activity of a novel synthetic progesterone species carrying a linoleic acid molecule against Helicobacter pylori and the hormonal effect of its steroid on a murine macrophage-like cell line. J Steroid Biochem Mol Biol. 2014;140:17–25. doi:10.1016/j.jsbmb.2013.10.023
  • Shimomura H, Hosoda K, Hayashi S, Yokota K, Hirai Y. Phosphatidylethanolamine of Helicobacter pylori functions as a steroid-binding lipid in the assimilation of free cholesterol and 3beta-hydroxl steroids into the bacterial cell membrane. J Bacteriol. 2012;194(10):2658–2667. doi:10.1128/JB.00105-12
  • Hosoda K, Shimomura H, Hayashi S, Yokota K, Hirai Y. Steroid hormones as bactericidal agents to Helicobacter pylori. FEMS Microbiol Lett. 2011;318(1):68–75. doi:10.1111/j.1574-6968.2011.02239.x
  • Wanibuchi K, Hosoda K, Ihara M, et al. Indene compounds synthetically derived from vitamin d have selective antibacterial action on helicobacter pylori. Lipids. 2018;53(4):393–401. doi:10.1002/lipd.12043
  • Krojer M, Keller M, Bracher F. 7-Aza-des-A-steroids with antimicrobial and cytotoxic activity. Sci Pharm. 2013;81(2):329–338. doi:10.3797/scipharm.1303-03
  • Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):222.
  • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43(1):67–93. doi:10.1146/annurev-genet-102808-114910
  • Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol. 2012;74(1):69–86. doi:10.1146/annurev-physiol-012110-142317
  • Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell. 2005;120(2):159–162. doi:10.1016/j.cell.2005.01.005
  • Deen NS, Huang SJ, Gong L, Kwok T, Devenish RJ. The impact of autophagic processes on the intracellular fate of Helicobacter pylori: more tricks from an enigmatic pathogen? Autophagy. 2013;9(5):639–652. doi:10.4161/auto.23782
  • Terebiznik MR, Raju D, Vazquez CL, et al. Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy. 2009;5(3):370–379. doi:10.4161/auto.5.3.7663
  • Hu W, Zhang L, Li MX, et al. Vitamin D3 activates the autolysosomal degradation function against Helicobacter pylori through the PDIA3 receptor in gastric epithelial cells. Autophagy. 2019;15(4):707–725. doi:10.1080/15548627.2018.1557835
  • Levy DE, Lee C-K. What does Stat3 do? J Clin Investig. 2002;109(9):1143–1148. doi:10.1172/JCI0215650
  • Zeevi DA, Frumkin A, Bach G. TRPML and lysosomal function. Biochim Biophys Acta. 2007;1772(8):851–858. doi:10.1016/j.bbadis.2007.01.004
  • Di Palma F, Belyantseva IA, Kim HJ, Vogt TF, Kachar B, Noben-Trauth K. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc Natl Acad Sci U S A. 2002;99(23):14994–14999. doi:10.1073/pnas.222425399
  • Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77(1):57–80. doi:10.1146/annurev-physiol-021014-071649