98
Views
1
CrossRef citations to date
0
Altmetric
Perspectives

Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound

ORCID Icon
Pages 2791-2798 | Published online: 02 Nov 2020

References

  • Blackmore J, Shrivastava S, Sallet J, Butler CR, Cleveland RO. Ultrasound neuromodulation: a review of results, mechanisms and safety. Ultrasound Med Biol. 2019;45(7):1509–1536. doi:10.1016/j.ultrasmedbio.2018.12.015
  • Tasaki I, Carnay L, Watanabe A. Transient changes in extrinsic fluorescence of nerve produced by electric stimulation. Proc Natl Acad Sci USA. 1969;64(4):1362–1368. doi:10.1073/pnas.64.4.1362
  • Terakawa S. Potential‐dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon. J Physiol. 1985;369(1):229–248. doi:10.1113/jphysiol.1985.sp015898
  • Heimburg T, Jackson AD. On the action potential as a propagating density pulse and the role of anesthetics. Biophys Rev Lett. 2007;2(1):57–78. doi:10.1142/S179304800700043X
  • Yang Y, Liu XW, Wang H, et al. Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion. ACS Nano. 2018;12(5):4186–4193. doi:10.1021/acsnano.8b00867
  • Rvachev MM. On axoplasmic pressure waves and their possible role in nerve impulse propagation. Biophys Rev Lett. 2010;5(2):73–88. doi:10.1142/S1793048010001147
  • El Hady A, Machta BB. Mechanical surface waves accompany action potential propagation. Nat Commun. 2015;6(1):1–7. doi:10.1038/ncomms7697
  • Engelbrecht J, Peets T, Tamm K. Electromechanical coupling of waves in nerve fibres. Biomech Model Mechanobiol. 2018;17(6):1771–1783. doi:10.1007/s10237-018-1055-2
  • Shrivastava S, Kang KH, Schneider MF. Collision and annihilation of nonlinear sound waves and action potentials in interfaces. J R Soc Interface. 2018;15(143):20170803. doi:10.1098/rsif.2017.0803
  • Fichtl B, Shrivastava S, Schneider MF. Protons at the speed of sound: predicting specific biological signaling from physics. Sci Rep. 2016;6(1):22874. doi:10.1038/srep22874
  • Prieto ML, Oralkan Ö, Khuri-Yakub BT, Maduke MC, Phillips W. Dynamic response of model lipid membranes to ultrasonic radiation force. PLoS One. 2013;8(10):e77115. doi:10.1371/journal.pone.0077115
  • Menz MD, Ye P, Firouzi K, et al. Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina. J Neurosci. 2019;39(32):6251–6264. doi:10.1523/JNEUROSCI.2394-18.2019
  • Wei W, Thiessen DB, Marston PL. Acoustic radiation force on a compressible cylinder in a standing wave. J Acoust Soc Am. 2004;116(1):201–208. doi:10.1121/1.1753291
  • Shrivastava S, Cleveland RO, Schneider MF. On measuring the acoustic state changes in lipid membranes using fluorescent probes. Soft Matter. 2018;14(47):9702–9712. doi:10.1039/c8sm01635f
  • Kruglikov IL. Modeling of the spatiotemporal distribution of temperature fields in skin and subcutaneous adipose tissue after exposure to ultrasound waves of different frequencies. AIP Adv. 2017;7(10):105317. doi:10.1063/1.4997833
  • Suchaoin W, Chanvorachote P. Caveolin-1 attenuates hydrogen peroxide-induced oxidative damage to lung carcinoma cells. Anticancer Res. 2012;32(2):483–490.
  • Zou H, Stoppani E, Volonte D, Galbiati F. Caveolin-1, cellular senescence and age-related diseases. Mech Ageing Dev. 2011;132(11–12):533–542. doi:10.1016/j.mad.2011.11.001
  • Mougeolle A, Poussard S, Decossas M, et al. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells. PLoS One. 2015;10(3):e0122654. doi:10.1371/journal.pone.0122654
  • Chen Y-H, Lin -W-W, Liu C-S, Su S-L. H2O2 induces caveolin-1 degradation and impaired mitochondrial function in E11 podocytes. Mol Med Rep. 2017;16(5):7841–7847. doi:10.3892/mmr.2017.7497
  • Khalil Z, Liu T, Helme RD. Free radicals contribute to the reduction in peripheral vascular responses and the maintenance of thermal hyperalgesia in rats with chronic constriction injury. Pain. 1999;79(1):31–37. doi:10.1016/s0304-3959(98)00143-2
  • Stern CM, Mermelstein PG. Caveolin regulation of neuronal intracellular signaling. Cell Mol Life Sci. 2010;67(22):3785–3795. doi:10.1007/s00018-010-0447-y
  • Mikol DD, Scherer SS, Duckett SJ, Hong HL, Feldman EL. Schwann cell caveolin‐1 expression increases during myelination and decreases after axotomy. Glia. 2002;38(3):191–199. doi:10.1002/glia.10063
  • Luo X, Tao L, Lin P, Mo X, Chen H. Extracellular heat shock protein 72 protects schwann cells from hydrogen peroxide‐induced apoptosis. J Neurosci Res. 2012;90(6):1261–1269. doi:10.1002/jnr.22810
  • Guzhova I, Kislyakova K, Moskaliova O, et al. In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res. 2001;914(1–2):66–73. doi:10.1016/s0006-8993(01)02774-3
  • Black AT, Hayden PJ, Casillas RP, et al. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol. 2011;253(2):112–120. doi:10.1016/j.taap.2011.03.015
  • Kawabata A. Prostaglandin E2 and pain—an update. Biol Pharm Bull. 2011;34(8):1170–1173. doi:10.1248/bpb.34.1170
  • Liou JY, Deng WG, Gilroy DW, Shyue SK, Wu KK. Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. J Biol Chem. 2001;276(37):34975–34982. doi:10.1074/jbc.M105946200
  • Rodriguez DA, Tapia JC, Fernandez JG, et al. Caveolin-1–mediated suppression of cyclooxygenase-2 via a β-catenin-Tcf/Lef–dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell. 2009;20(8):2297–2310. doi:10.1091/mbc.e08-09-0939
  • Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals. 2016;9(4):72. doi:10.3390/ph9040072
  • Khan A, Khan S, Kim YS. Insight into pain modulation: nociceptors sensitization and therapeutic targets. Curr Drug Target. 2019;20(7):775–788. doi:10.2174/1389450120666190131114244
  • Startek JB, Talavera K. Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides. Int J Mol Sci. 2020;21(11):3826. doi:10.3390/ijms21113826
  • Koivisto A, Jalava N, Bratty R, Pertovaara A. TRPA1 antagonists for pain relief. Pharmaceuticals. 2018;11(4):117. doi:10.3390/ph11040117
  • De Logu F, Nassini R, Materazzi S, et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun. 2017;8(1):1–16. doi:10.1038/s41467-017-01739-2
  • Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem. 2001;276(41):38121–38138. doi:10.1074/jbc.M105408200
  • Schubert W, Frank PG, Woodman SE, et al. Microvascular hyper-permeability in caveolin-1 (-/-) knock-out mice: treatment with a specific NOS inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem. 2002;277(42):40091–40098. doi:10.1074/jbc.M205948200
  • Maniatis NA, Kardara M, Hecimovich D, et al. Role of caveolin-1 expression in the pathogenesis of pulmonary edema in ventilator-induced lung injury. Pulm Circ. 2012;2(4):452–460. doi:10.4103/2045-8932.105033
  • Choi KH, Kim HS, Park MS, et al. Overexpression of caveolin-1 attenuates brain edema by inhibiting tight junction degradation. Oncotarget. 2016;7(42):67857. doi:10.18632/oncotarget.12346
  • McGuire JF, Rouen S, Siegfreid E, Wright DE, Dobrowsky RT. Caveolin-1 and altered neuregulin signaling contribute to the pathophysiological progression of diabetic peripheral neuropathy. Diabetes. 2009;58(11):2677–2686. doi:10.2337/db09-0594
  • Yu C, Rouen S, Dobrowsky RT. Hyperglycemia and downregulation of caveolin‐1 enhance neuregulin‐induced demyelination. Glia. 2008;56(8):877–887. doi:10.1002/glia.20662
  • Fahmi H, Martel-Pelletier J, Pelletier JP, Kapoor M. Peroxisome proliferator-activated receptor gamma in osteoarthritis. Mod Rheumatol. 2011;21(1):1–9. doi:10.1007/s10165-010-0347-x
  • Llaverias G, Vázquez-Carrera M, Sánchez RM, et al. Rosiglitazone upregulates caveolin-1 expression in THP-1 cells through a PPAR-dependent mechanism. J Lipid Res. 2004;45(11):2015–2024. doi:10.1194/jlr.M400049-JLR200
  • Werion A, Joris V, Hepp M, et al. Pioglitazone, a PPARγ agonist, upregulates the expression of caveolin-1 and catalase, essential for thyroid cell homeostasis: a clue to the pathogenesis of hashimoto’s thyroiditis. Thyroid. 2016;26(9):1320–1331. doi:10.1089/thy.2015.0625
  • Kruglikov IL, Scherer PE. Caveolin as a universal target in dermatology. Int J Mol Sci. 2020;21(1):80. doi:10.3390/ijms21010080
  • Volonte D, Liu Y, Galbiati F. The modulation of caveolin‐1 expression controls satellite cell activation during muscle repair. FASEB J. 2005;19(2):237–239. doi:10.1096/fj.04-2215fje
  • Echarri A, Del Pozo MA. Caveolae–mechanosensitive membrane invaginations linked to actin filaments. J Cell Sci. 2015;128(15):2747–2758. doi:10.1242/jcs.153940
  • Kruglikov IL, Scherer PE. Caveolin-1 as a pathophysiological factor and target in psoriasis. NPJ Aging Mech Dis. 2019;5(1):1–7. doi:10.1038/s41514-019-0034-x
  • Kruglikov IL, Scherer PE. Caveolin-1 as a target in prevention and treatment of hypertrophic scarring. NPJ Regen Med. 2019;4(1):1–7. doi:10.1038/s41536-019-0071-x
  • Mizrahi N, Zhou EH, Lenormand G, et al. Low intensity ultrasound perturbs cytoskeleton dynamics. Soft Matter. 2012;8(8):2438–2443. doi:10.1039/C2SM07246G
  • Samandari M, Abrinia K, Mokhtari-Dizaji M, Tamayol A. Ultrasound induced strain cytoskeleton rearrangement: an experimental and simulation study. J Biomech. 2017;60:39–47. doi:10.1016/j.jbiomech.2017.06.003
  • Sontag W, Kruglikov IL. Expression of heat shock proteins after ultrasound exposure in HL-60 cells. Ultrasound Med Biol. 2009;35(6):1032–1041. doi:10.1016/j.ultrasmedbio.2008.12.011
  • Yang Q, Nanayakkara GK, Drummer C, et al. Low-intensity ultrasound-induced anti-inflammatory effects are mediated by several new mechanisms including gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking. Front Physiol. 2017;8:818. doi:10.3389/fphys.2017.00818
  • Sinha B, Köster D, Ruez R, et al. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell. 2011;144(3):402–413. doi:10.1016/j.cell.2010.12.031
  • Kubanek J, Shukla P, Das A, Baccus SA, Goodman MB. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J Neurosci. 2018;38(12):3081–3091. doi:10.1523/JNEUROSCI.1458-17.2018
  • Kruglikov IL. Very high frequency ultrasound. Hautarzt. 2015;66(11):829–833. doi:10.1007/s00105-015-3676-z
  • Kruglikov IL. Sehr hochfrequenter Ultraschall in der ästhetischen Medizin und Chirurgie. J Ästh Chir. 2018;11(3):124–129. doi:10.1007/s12631-018-0140-9
  • Kruglikov IL, Zhang Z, Scherer PE. Caveolin-1 in skin aging. From innocent bystander to major contributor. Ageing Res Rev. 2019;55:100959. doi:10.1016/j.arr.2019.100959
  • Kruglikov IL, Scherer PE. Caveolin‐1 as a possible target in the treatment for acne. Exp Dermatol. 2020;29(2):177–183. doi:10.1111/exd.14063
  • Kruglikov IL, Kruglikova E. Dual treatment strategy by venous ulcers: pilot study to dual-frequency ultrasound application. J Cos Dermatol Sci Appl. 2011;1(4):157–163.
  • Tausch I, Kruglikov I. The benefit of dual-frequency ultrasound in patients treated by injection lipolysis. J Clin Aesthet Dermatol. 2015;8(8):42–46.
  • Ahn KH, Lee SJ, Park ES, Park YG. Satisfaction with the effect of local dynamical micro-massage therapy on the pain and discomfort after breast reconstruction surgery. Med Laser. 2020;9(1):39–43. doi:10.25289/ML.2020.9.1.39
  • Choi YS, Park ES. Application of dual-frequency ultrasound to radiation-induced fibrosis in a breast cancer patient. Med Laser. 2017;6(2):86–89. doi:10.25289/ML.2017.6.2.86