384
Views
11
CrossRef citations to date
0
Altmetric
Review

The Role of Anti-Nerve Growth Factor Monoclonal Antibodies in the Control of Chronic Cancer and Non-Cancer Pain

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1959-1967 | Published online: 28 Jun 2021

References

  • Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24(1):677–736. doi:10.1146/annurev.neuro.24.1.677
  • Aloe L, Montalcini Leva R. The discovery of nerve growth factor and modern neurobiology. Trends Cell Biol. 2004;14(7):395–399. doi:10.1016/j.tcb.2004.05.011
  • Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci. 1993;13(5):2136–2148. doi:10.1523/JNEUROSCI.13-05-02136.1993
  • Mizumura K, Murase S. Role of nerve growth factor in pain. Handb Exp Pharmacol. 2015;227:57–77.
  • Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology. 2011;115(1):189–204. doi:10.1097/ALN.0b013e31821b1ac5
  • Lindsay RM, Harmar AJ. Nerve growth factor regulates expression of neuropeptide genes in adult sensory neurons. Nature. 1989;337(6205):362–364. doi:10.1038/337362a0
  • Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413(6852):203–210. doi:10.1038/35093019
  • Hefti FF, Rosenthal A, Walicke PA, et al. Novel class of pain drugs based on antagonism of NGF. Trends Pharmacol Sci. 2006;27(2):85–91. doi:10.1016/j.tips.2005.12.001
  • Watson JJ, Allen SJ, Dawbarn D. Targeting nerve growth factor in pain: what is the therapeutic potential? Bio Drugs. 2008;22(6):349–359.
  • Miller RE, Block JA, Malfait AM. Nerve growth factor blockade for the management of osteoarthritis pain: what can we learn from clinical trials and preclinical models? Curr Opin Rheumatol. 2017;29(1):110–118. doi:10.1097/BOR.0000000000000354
  • Yeh JF, Akinci A, Al Shaker M, et al. Monoclonal antibodies for chronic pain: a practical review of mechanisms and clinical applications. Mol Pain. 2017;13:1744806917740233. doi:10.1177/1744806917740233
  • Lane NE, Schnitzer TJ, Birbara CA, et al. Tanezumab for the treatment of pain from osteoarthritis of the knee. N Engl J Med. 2010;363(16):1521–1531. doi:10.1056/NEJMoa0901510
  • Enomoto M, Mantyh PW, Murrell J, Innes JF, Lascelles BDX. Anti-nerve growth factor monoclonal antibodies for the control of pain in dogs and cats. Vet Rec. 2019;184(1):23. doi:10.1136/vr.104590
  • da Silva JT, Evangelista BG, Venega RAG, Seminowicz DA, Chacur M. Anti-NGF treatment can reduce chronic neuropathic pain by changing peripheral mediators and brain activity in rats. Behav Pharmacol. 2019;30(1):79–88. doi:10.1097/FBP.0000000000000422
  • Sabsovich I, Wei T, Guo TZ, et al. Effect of anti-NGF antibodies in a rat tibia fracture model of complex regional pain syndrome type I. Pain. 2008;138(1):47–60. doi:10.1016/j.pain.2007.11.004
  • Khan N, Smith MT. Neurotrophins and neuropathic pain: role in pathobiology. Molecules. 2015;20(6):10657–10688. doi:10.3390/molecules200610657
  • Kumar V, Mahal BA. NGF – the TrkA to successful pain treatment. J Pain Res. 2012;5:279–287. doi:10.2147/JPR.S33408
  • Barker PA, Mantyh P, Arendt-Nielsen L, Viktrup L, Tive L. Nerve growth factor signaling and its contribution to pain. J Pain Res. 2020;26(13):1223–1241. doi:10.2147/JPR.S247472
  • McNamee KE, Burleigh A, Gompels LL, et al. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain. 2010;149(2):386–392. doi:10.1016/j.pain.2010.03.002
  • Flannery CR, Moran N, Blasioli D, et al. Efficacy of a novel, locally delivered TrkA inhibitor in preclinical models of OA and joint pain. Osteoarthritis Cartilage. 2015;23(Supplement 2):A26–81. doi:10.1016/j.joca.2015.02.100
  • Bryden LA, Nicholson JR, Doods H, Pekcec A. Deficits in spontaneous burrowing behavior in the rat bilateral monosodium iodoacetate model of osteoarthritis: an objective measure of pain-related behavior and analgesic efficacy. Osteoarthritis Cartilage. 2015;23(9):1605–1612. doi:10.1016/j.joca.2015.05.001
  • Ishikawa G, Koya Y, Tanaka H, Nagakura Y. Long-term analgesic effect of a single dose of anti-NGF antibody on pain during motion without notable suppression of joint edema and lesion in a rat model of osteoarthritis. Osteoarthritis Cartilage. 2015;23(6):925–932. doi:10.1016/j.joca.2015.02.002
  • Lascelles BD, Knazovicky D, Case B, et al. A canine-specific anti-nerve growth factor antibody alleviates pain and improves mobility and function in dogs with degenerative joint disease-associated pain. BMC Vet Res. 2015;30(11):101. doi:10.1186/s12917-015-0413-x
  • Kc R, Li X, Kroin JS, et al. PKCδ null mutations in a mouse model of osteoarthritis alter osteoarthritic pain independently of joint pathology by augmenting NGF/TrkA-induced axonal outgrowth. Ann Rheum Dis. 2016;75(12):2133–2141. doi:10.1136/annrheumdis-2015-208444
  • Nwosu LN, Mapp PI, Chapman V, Walsh DA. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann Rheum Dis. 2016;75(6):1246–1254. doi:10.1136/annrheumdis-2014-207203
  • LaBranche TP, Bendele AM, Omura BC, et al. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model. Ann Rheum Dis. 2017;76(1):295–302. doi:10.1136/annrheumdis-2015-208913
  • Xu L, Nwosu LN, Burston JJ, et al. The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain. Osteoarthritis Cartilage. 2016;24(9):1587–1595. doi:10.1016/j.joca.2016.05.015
  • Majuta LA, Guedon JG, Mitchell SAT, Ossipov MH, Mantyh PW. Anti-nerve growth factor therapy increases spontaneous day/night activity in mice with orthopedic surgery-induced pain. Pain. 2017;158(4):605–617. doi:10.1097/j.pain.0000000000000799
  • Miyagi M, Ishikawa T, Kamoda H, et al. Efficacy of nerve growth factor antibody in a knee osteoarthritis pain model in mice. BMC Musculoskelet Disord. 2017;18(1):428. doi:10.1186/s12891-017-1792-x
  • von Loga IS, El-Turabi A, Jostins L, et al. Active immunisation targeting nerve growth factor attenuates chronic pain behaviour in murine osteoarthritis. Ann Rheum Dis. 2019;78(5):672–675. doi:10.1136/annrheumdis-2018-214489
  • Johnson EM Jr, Rich KM, Yip HK. The role of NGF in sensory neurons in vivo. Trends Neurosci. 1986;9:33–37. doi:10.1016/0166-2236(86)90012-3
  • Dai WL, Yan B, Bao YN, Fan JF, Liu JH. Suppression of peripheral NGF attenuates neuropathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB signaling pathways. Cell Commun Signal. 2020;18(1):66. doi:10.1186/s12964-020-00556-3
  • Dos Reis RC, Kopruszinski CM, Nones CF, Chichorro JG. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats. Behav Pharmacol. 2016;27(6):528–535. doi:10.1097/FBP.0000000000000246
  • Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115(1–2):128–141. doi:10.1016/j.pain.2005.02.022
  • Halvorson KG, Kubota K, Sevcik MA, et al. A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res. 2005;65(20):9426–9435. doi:10.1158/0008-5472.CAN-05-0826
  • Mantyh WG, Jimenez-Andrade JM, Stake JI, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010;171(2):588–598. doi:10.1016/j.neuroscience.2010.08.056
  • Ye Y, Dang D, Zhang J, et al. Nerve growth factor links oral cancer progression, pain, and cachexia. Mol Cancer Ther. 2011;10(9):1667–1676. doi:10.1158/1535-7163.MCT-11-0123
  • Jimenez-Andrade JM, Ghilardi JR, Castañeda-Corral G, Kuskowski MA, Mantyh PW. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152(11):2564–2574. doi:10.1016/j.pain.2011.07.020
  • Sainoh T, Sakuma Y, Miyagi M, et al. Efficacy of anti-nerve growth factor therapy for discogenic neck pain in rats. Spine (Phila Pa 1976). 2014;39(13):E757–62. doi:10.1097/BRS.0000000000000340
  • Guedon JG, Longo G, Majuta LA, Thomspon ML, Fealk MN, Mantyh PW. Dissociation between the relief of skeletal pain behaviors and skin hypersensitivity in a model of bone cancer pain. Pain. 2016;157(6):1239–1247. doi:10.1097/j.pain.0000000000000514
  • Buehlmann D, Ielacqua GD, Xandry J, Rudin M. Prospective administration of anti-nerve growth factor treatment effectively suppresses functional connectivity alterations after cancer-induced bone pain in mice. Pain. 2019;160(1):151–159. doi:10.1097/j.pain.0000000000001388
  • Miyagi M, Ishikawa T, Kamoda H, et al. The efficacy of nerve growth factor antibody in a mouse model of neuropathic cancer pain. Exp Anim. 2016;65(4):337–343. doi:10.1538/expanim.16-0014
  • Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021;17(1):34–46. doi:10.1038/s41584-020-00528-4
  • Brown MT, Murphy FT, Radin DM, Davignon I, Smith MD, West CR. Tanezumab reduces osteoarthritic knee pain: results of a randomized, double-blind, placebo-controlled phase III trial. J Pain. 2012;13(8):790–798. doi:10.1016/j.jpain.2012.05.006
  • Spierings ELH, Fidelholtz J, Wolfram G, Smith MD, Brown MT, West CR. A phase III placebo- and oxycodone-controlled study of tanezumab in adults with osteoarthritis pain of the hip or knee. Pain. 2013;154(9):1603–1612. doi:10.1016/j.pain.2013.04.035
  • Balanescu AR, Feist E, Wolfram G, et al. Efficacy and safety of tanezumab added on to diclofenac sustained release in patients with knee or hip osteoarthritis: a double-blind, placebo-controlled, parallel-group, multicentre phase III randomised clinical trial. Ann Rheum Dis. 2014;73(9):1665–1672. doi:10.1136/annrheumdis-2012-203164
  • Ekman EF, Gimbel JS, Bello AE, et al. Efficacy and safety of intravenous tanezumab for the symptomatic treatment of osteoarthritis: 2 randomized controlled trials versus naproxen. J Rheumatol. 2014;41(11):2249–2259. doi:10.3899/jrheum.131294
  • Schnitzer TJ, Ekman EF, Spierings ELH, et al. Efficacy and safety of tanezumab monotherapy or combined with non-steroidal anti-inflammatory drugs in the treatment of knee or hip osteoarthritis pain. Ann Rheum Dis. 2015;74(6):1202–1211. doi:10.1136/annrheumdis-2013-204905
  • Birbara C, Dabezies EJ Jr, Burr AM, et al. Safety and efficacy of subcutaneous tanezumab in patients with knee or hip osteoarthritis. J Pain Res. 2018;8(11):151–164. doi:10.2147/JPR.S135257
  • Schnitzer TJ, Easton R, Pang S, et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial. JAMA. 2019;322(1):37–48. doi:10.1001/jama.2019.8044
  • Schnitzer TJ, Khan A, Bessette L, et al. Onset and maintenance of efficacy of subcutaneous tanezumab in patients with moderate to severe osteoarthritis of the knee or hip: a 16-Week Dose-Titration Study. Semin Arthritis Rheum. 2020;50(3):387–393. doi:10.1016/j.semarthrit.2020.03.004
  • Berenbaum F, Blanco FJ, Guermazi A, et al. Subcutaneous tanezumab for osteoarthritis of the hip or knee: efficacy and safety results from a 24-week randomised phase III study with a 24-week follow-up period. Ann Rheum Dis. 2020;79(6):800–810. doi:10.1136/annrheumdis-2019-216296
  • Mayorga AJ, Wang S, Kelly KM, Thipphawong J. Efficacy and safety of fulranumab as monotherapy in patients with moderate to severe, chronic knee pain of primary osteoarthritis: a randomised, placebo- and active-controlled trial. Int J Clin Pract. 2016;70(6):493–505. doi:10.1111/ijcp.12807
  • Sanga P, Katz N, Polverejan E, et al. Long-term safety and efficacy of fulranumab in patients with moderate-to-severe osteoarthritis pain: a Phase II Randomized, Double-Blind, Placebo-Controlled Extension Study. Arthritis Rheumatol. 2017;69(4):763–773. doi:10.1002/art.39943
  • Dakin P, DiMartino SJ, Gao H, et al. The efficacy, tolerability, and joint safety of fasinumab in osteoarthritis pain: a phase IIB/III double-blind, placebo-controlled, randomized clinical trial. Arthritis Rheumatol. 2019;71(11):1824–1834. doi:10.1002/art.41012
  • Bannwarth B, Kostine M. Targeting nerve growth factor (NGF) for pain management: what does the future hold for NGF antagonists? Drugs. 2014;74(6):619–626. doi:10.1007/s40265-014-0208-6
  • Hochberg MC, Tive LA, Abramson SB, et al. When is osteonecrosis not osteonecrosis?: adjudication of reported serious adverse joint events in the tanezumab clinical development program. Arthritis Rheumatol. 2016;68(2):382–391. doi:10.1002/art.39492
  • Hochberg MC, Carrino J, Schnitzer T, et al. Subcutaneous tanezumab versus NSAID for the treatment of osteoarthritis: joint safety events in a randomized, double- blind, active- controlled, 80-week, phase-3 study. Arthritis Rheumatol. 2019;71:2756.
  • US National Library of Medicine. ClinicalTrials.gov; 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02709486. Accessed June 11, 2021.
  • US National Library of Medicine. ClinicalTrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02528188. Accessed June 11, 2021.
  • Rashad S, Hemingway A, Rainsford K, et al. Effect of non- steroidal anti-inflammatory drugs on the course of osteoarthritis. Lancet. 1989;2(8662):519–522. doi:10.1016/S0140-6736(89)90651-X
  • Chen MR, Dragoo JL. The effect of nonsteroidal anti- inflammatory drugs on tissue healing. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):540–549. doi:10.1007/s00167-012-2095-2
  • Kivitz AJ, Gimbel JS, Bramson C, et al. Efficacy and safety of tanezumab versus naproxen in the treatment of chronic low back pain. Pain. 2013;154(7):1009–1021. doi:10.1016/j.pain.2013.03.006
  • Gimbel JS, Kivitz AJ, Bramson C, et al. Long-term safety and effectiveness of tanezumab as treatment for chronic low back pain. Pain. 2014;155(9):1793–1801.
  • Hochberg MC, Carrino J, Schnitzer T, et al. Verburg KM Subcutaneous tanezumab versus NSAID for the treatment of osteoarthritis: joint safety events in a randomized, double-blind, active-controlled, 80-week, phase-3 study [abstract]. Arthritis Rheumatol. 2019;71:2756.
  • US National Library of Medicine. ClinicalTrials.gov; 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02709486. Accessed June 11, 2021.
  • Garber K, Aloe L. Fate of novel painkiller mAbs hangs in balance. Nat Biotechnol. 2011;29(3):173–174. doi:10.1038/nbt0311-173
  • US National Library of Medicine. ClinicalTrials.gov; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02528188. Accessed June 11, 2021.
  • Kivitz AJ, Gimbel JS, Bramson C, et al. Efficacy and safety of tanezumab versus naproxen in the treatment of chronic low back pain. Pain. 2013;154(7):1009–1021.
  • Leite VF, Buehler AM, El Abd O, et al. Anti-nerve growth factor in the treatment of low back pain and radiculopathy: a systematic review and a meta-analysis. Pain Physician. 2014;17(1):E45–E60.
  • Karsdal MA, Verburg KM, West CR, et al. Serological biomarker profiles of rapidly progressive osteoarthritis in tanezumab- treated patients. Osteoarthritis Cartilage. 2019;27(3):484–492. doi:10.1016/j.joca.2018.12.001
  • Bimonte S, Cascella M, Schiavone V, Mehrabi-Kermani F, Cuomo A. The roles of epigallocatechin-3-gallate in the treatment of neuropathic pain: an update on preclinical in vivo studies and future perspectives. Drug Des Devel Ther. 2017;11:2737–2742. doi:10.2147/DDDT.S142475
  • Cuomo A, Bimonte S, Forte CA, Botti G, Cascella M. Multimodal approaches and tailored therapies for pain management: the trolley analgesic model. J Pain Res. 2019;19(12):711–714. doi:10.2147/JPR.S178910