298
Views
6
CrossRef citations to date
0
Altmetric
Review

Systematic Review of Systemic and Neuraxial Effects of Acetaminophen in Preclinical Models of Nociceptive Processing

, ORCID Icon, &
Pages 3521-3552 | Published online: 12 Nov 2021

References

  • Gaskin DJ, Richard P. The economic costs of pain in the United States. J Pain. 2012;13(8):715–724. doi:10.1016/j.jpain.2012.03.009
  • Haykal T, Barbarawi M, Zayed Y, et al. Safety and efficacy of aspirin for primary prevention of cancer: a meta-analysis of randomized controlled trials. J Cancer Res Clin Oncol. 2019;145(7):1795–1809. doi:10.1007/s00432-019-02932-0
  • Honvo G, Leclercq V, Geerinck A, et al. Safety of topical non-steroidal anti-inflammatory drugs in osteoarthritis: outcomes of a systematic review and meta-analysis. Drugs Aging. 2019;36(Suppl 1):45–64. doi:10.1007/s40266-019-00661-0
  • Vranken JH. Elucidation of pathophysiology and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem. 2012;12(4):304–314. doi:10.2174/187152412803760645
  • Baron R. Neuropathic pain: a clinical perspective. Handb Exp Pharmacol. 2009;194:3–30. doi:10.1007/978-3-540-79090-7_1
  • Prescott LF. Paracetamol: past, present, and future. Am J Ther. 2000;7(2):143–147. doi:10.1097/00045391-200007020-00011
  • Brune K, Renner B, Tiegs G. Acetaminophen/paracetamol: a history of errors, failures and false decisions. Eur J Pain. 2015;19(7):953–965. doi:10.1002/ejp.621
  • Brune K, Hinz B. Paracetamol, ibuprofen, or a combination of both drugs against knee pain: an excellent new randomised clinical trial answers old questions and suggests new therapeutic recommendations. Ann Rheum Dis. 2011;70(9):1521–1522. doi:10.1136/annrheumdis-2011-200242
  • Stephan BC, Parsa FD. Avoiding opioids and their harmful side effects in the postoperative patient: exogenous opioids, endogenous endorphins, wellness, mood, and their relation to postoperative pain. Hawaii J Med Public Health. 2016;75(3):63–67.
  • McCrae JC, Morrison EE, MacIntyre IM, Dear JW, Webb DJ. Long-term adverse effects of paracetamol - a review. Br J Clin Pharmacol. 2018;84(10):2218–2230. doi:10.1111/bcp.13656
  • Nagai J, Uesawa Y, Shimamura R, Kagaya H. Characterization of the adverse effects induced by acetaminophen and nonsteroidal anti-inflammatory drugs based on the analysis of the Japanese adverse drug event report database. Clin J Pain. 2017;33(8):667–675. doi:10.1097/AJP.0000000000000457
  • Shankar SR. Intravenous acetaminophen in postoperative patients. JAMA. 2020;324(22):2327. doi:10.1001/jama.2020.21462
  • Dart RC, Green JL. The prescription paradox of acetaminophen safety. Pharmacoepidemiol Drug Saf. 2016;25(5):599–601. doi:10.1002/pds.3930
  • Mazaleuskaya LL, Sangkuhl K, Thorn CF, FitzGerald GA, Altman RB, Klein TE. PharmGKB summary: pathways of acetaminophen metabolism at the therapeutic versus toxic doses. Pharmacogenet Genomics. 2015;25(8):416–426. doi:10.1097/FPC.0000000000000150
  • Krenzelok EP, Royal MA. Confusion: acetaminophen dosing changes based on NO evidence in adults. Drugs R D. 2012;12(2):45–48. doi:10.2165/11633010-000000000-00000
  • Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA. Recent patterns of medication use in the ambulatory adult population of the United States: the slone survey. JAMA. 2002;287(3):337–344. doi:10.1001/jama.287.3.337
  • Toussaint K, Yang XC, Zielinski MA, et al. What do we (not) know about how paracetamol (acetaminophen) works? J Clin Pharm Ther. 2010;35(6):617–638. doi:10.1111/j.1365-2710.2009.01143.x
  • Holmer Pettersson P, Jakobsson J, Owall A. Plasma concentrations following repeated rectal or intravenous administration of paracetamol after heart surgery. Acta Anaesthesiol Scand. 2006;50(6):673–677. doi:10.1111/j.1399-6576.2006.01043.x
  • Holmer Pettersson P, Owall A, Jakobsson J. Early bioavailability of paracetamol after oral or intravenous administration. Acta Anaesthesiol Scand. 2004;48(7):867–870. doi:10.1111/j.0001-5172.2004.00452.x
  • Singla NK, Parulan C, Samson R, et al. Plasma and cerebrospinal fluid pharmacokinetic parameters after single-dose administration of intravenous, oral, or rectal acetaminophen. Pain Pract. 2012;12(7):523–532. doi:10.1111/j.1533-2500.2012.00556.x
  • Filitz J, Ihmsen H, Gunther W, et al. Supra-additive effects of tramadol and acetaminophen in a human pain model. Pain. 2008;136(3):262–270. doi:10.1016/j.pain.2007.06.036
  • Sachs CJ. Oral analgesics for acute nonspecific pain. Am Fam Physician. 2005;71(5):913–918.
  • Jones P, Dalziel SR, Lamdin R, Miles-Chan JL, Frampton C. Oral non-steroidal anti-inflammatory drugs versus other oral analgesic agents for acute soft tissue injury. Cochrane Database Syst Rev. 2015;(7):CD007789. doi:10.1002/14651858.CD007789.pub2
  • Chou D, Abalos E, Gyte GM, Gulmezoglu AM. Paracetamol/acetaminophen (single administration) for perineal pain in the early postpartum period. Cochrane Database Syst Rev. 2013;(1):CD008407. doi:10.1002/14651858.CD008407.pub2
  • McNicol ED, Tzortzopoulou A, Cepeda MS, Francia MB, Farhat T, Schumann R. Single-dose intravenous paracetamol or propacetamol for prevention or treatment of postoperative pain: a systematic review and meta-analysis. Br J Anaesth. 2011;106(6):764–775. doi:10.1093/bja/aer107
  • Stephens G, Derry S, Moore RA. Paracetamol (Acetaminophen) for acute treatment of episodic tension-type headache in adults. Cochrane Database Syst Rev. 2016;6:CD011889. doi:10.1002/14651858.CD011889.pub2
  • Apfel C, Jahr JR, Kelly CL, Ang RY, Oderda GM. Effect of i.v. acetaminophen on total hip or knee replacement surgery: a case-matched evaluation of a national patient database. Am J Health Syst Pharm. 2015;72(22):1961–1968. doi:10.2146/ajhp140179
  • Machado GC, Maher CG, Ferreira PH, et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo controlled trials. BMJ. 2015;350:h1225. doi:10.1136/bmj.h1225
  • Pickering G, Kastler A, Macian N, et al. The brain signature of paracetamol in healthy volunteers: a double-blind randomized trial. Drug Des Devel Ther. 2015;9:3853–3862. doi:10.2147/DDDT.S81004
  • Sinatra RS, Jahr JS, Reynolds LW, Viscusi ER, Groudine SB, Payen-Champenois C. Efficacy and safety of single and repeated administration of 1 gram intravenous acetaminophen injection (paracetamol) for pain management after major orthopedic surgery. Anesthesiology. 2005;102(4):822–831. doi:10.1097/00000542-200504000-00019
  • Yu S, Eftekhary N, Wiznia D, et al. Evolution of an opioid sparse pain management program for total knee arthroplasty with the addition of intravenous acetaminophen. J Arthroplasty. 2019;35(1):89–94. doi:10.1016/j.arth.2019.08.013
  • Li J, Shi SZ, Wang JS, et al. Efficacy of melanoma patients treated with PD-1 inhibitors: protocol for an overview, and a network meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019;98(27):e16342. doi:10.1097/MD.0000000000016342
  • Westrich GH, Birch GA, Muskat AR, et al. Intravenous vs oral acetaminophen as a component of multimodal analgesia after total hip arthroplasty: a randomized, blinded trial. J Arthroplasty. 2019;34(7S):S215–S220. doi:10.1016/j.arth.2019.02.030
  • Van Aken H, Thys L, Veekman L, Buerkle H. Assessing analgesia in single and repeated administrations of propacetamol for postoperative pain: comparison with morphine after dental surgery. Anesth Analg. 2004;98(1):159–165. table of contents. doi:10.1213/01.ANE.0000093312.72011.59
  • Rizkalla N, Zane NR, Prodell JL, et al. Use of intravenous acetaminophen in children for analgesia after spinal fusion surgery: a randomized clinical trial. J Pediatr Pharmacol Ther. 2018;23(5):395–404. doi:10.5863/1551-6776-23.5.395
  • Wininger SJ, Miller H, Minkowitz HS, et al. A randomized, double-blind, placebo-controlled, multicenter, repeat-dose study of two intravenous acetaminophen dosing regimens for the treatment of pain after abdominal laparoscopic surgery. Clin Ther. 2010;32(14):2348–2369. doi:10.1016/j.clinthera.2010.12.011
  • Lee Y, Yu J, Doumouras AG, et al. Intravenous acetaminophen versus placebo in post-bariatric surgery multimodal pain management: a meta-analysis of randomized controlled trials. Obes Surg. 2019;29(4):1420–1428. doi:10.1007/s11695-019-03732-8
  • Faiz HR, Rahimzadeh P, Visnjevac O, Behzadi B, Ghodraty MR, Nader ND. Intravenous acetaminophen is superior to ketamine for postoperative pain after abdominal hysterectomy: results of a prospective, randomized, double-blind, multicenter clinical trial. J Pain Res. 2014;7:65–70. doi:10.2147/JPR.S53234
  • Urman RD, Boing EA, Pham AT, et al. Improved outcomes associated with the use of intravenous acetaminophen for management of acute post-surgical pain in cesarean sections and hysterectomies. J Clin Med Res. 2018;10(6):499–507. doi:10.14740/jocmr3380w
  • Altenau B, Crisp CC, Devaiah CG, Lambers DS. Randomized controlled trial of intravenous acetaminophen for postcesarean delivery pain control. Am J Obstet Gynecol. 2017;217(3):362e1–362 e6. doi:10.1016/j.ajog.2017.04.030
  • Ng QX, Loke W, Yeo WS, Chng KYY, Tan CH. A meta-analysis of the utility of preoperative intravenous paracetamol for post-caesarean analgesia. Medicina (Kaunas). 2019;55(8):424. doi:10.3390/medicina55080424
  • Herring BO, Ader S, Maldonado A, Hawkins C, Kearson M, Camejo M. Impact of intravenous acetaminophen on reducing opioid use after hysterectomy. Pharmacotherapy. 2014;34(Suppl 1):27S–33S. doi:10.1002/phar.1513
  • Jelacic S, Bollag L, Bowdle A, Rivat C, Cain KC, Richebe P. Intravenous acetaminophen as an adjunct analgesic in cardiac surgery reduces opioid consumption but not opioid-related adverse effects: a randomized controlled trial. J Cardiothorac Vasc Anesth. 2016;30(4):997–1004. doi:10.1053/j.jvca.2016.02.010
  • Smith E, Lange J, Moore C, Eid I, Jackson L, Monico J. The role of intravenous acetaminophen in post-operative pain control in head and neck cancer patients. Laryngoscope Investig Otolaryngol. 2019;4(2):250–254. doi:10.1002/lio2.254
  • Mont MA, Lovelace B, Pham AT, et al. Intravenous acetaminophen may be associated with reduced odds of 30-day readmission after total knee arthroplasty. J Knee Surg. 2018. doi:10.1055/s-0038-1646927
  • Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol. 2018;36(1):172.
  • Patterson DC, Cagle PJ Jr., Poeran J, et al. Effectiveness of intravenous acetaminophen for postoperative pain management in shoulder arthroplasties: a Population-Based Study. J Orthop Translat. 2019;18:119–127. doi:10.1016/j.jot.2018.09.004
  • Wilson SH, Hebbar L. Balancing analgesia and toxicity with postoperative acetaminophen: more studies are still needed. Pain Med. 2019;20(11):2331–2332. doi:10.1093/pm/pnz205
  • Stundner O, Poeran J, Ladenhauf HN, et al. Effectiveness of intravenous acetaminophen for postoperative pain management in hip and knee arthroplasties: a Population-Based Study. Reg Anesth Pain Med. 2019;44(5):565–572. doi:10.1136/rapm-2018-100145
  • Di Munno O, Sarchi C. Effectiveness of tolmetin in rheumatoid arthritis: evaluation by means of a new method. Methods Find Exp Clin Pharmacol. 1982;4(3):203–206.
  • Solomon L, Abrams G. Bumadizone calcium in the treatment of rheumatoid arthritis. S Afr Med J. 1977;52(10):391–393.
  • Pesa J, Meyer R, Quock TP, Rattana SK, Mody SH. Opioid utilization patterns among medicare patients with diabetic peripheral neuropathy. Am Health Drug Benefits. 2013;6(4):188–196.
  • Axelsson B, Borup S. Is there an additive analgesic effect of paracetamol at step 3? A double-blind randomized controlled study. Palliat Med. 2003;17(8):724–725. doi:10.1177/026921630301700816
  • Israel FJ, Parker G, Charles M, Reymond L. Lack of benefit from paracetamol (acetaminophen) for palliative cancer patients requiring high-dose strong opioids: a randomized, double-blind, placebo-controlled, crossover trial. J Pain Symptom Manage. 2010;39(3):548–554. doi:10.1016/j.jpainsymman.2009.07.008
  • Saragiotto BT, Machado GC, Ferreira ML, Pinheiro MB, Abdel Shaheed C, Maher CG. Paracetamol for low back pain. Cochrane Database Syst Rev. 2016;6:CD012230. doi:10.1002/14651858.CD012230
  • Wiffen PJ, Derry S, Moore RA, et al. Oral paracetamol (acetaminophen) for cancer pain. Cochrane Database Syst Rev. 2017;7:CD012637. doi:10.1002/14651858.CD012637.pub2
  • Qaseem A, Wilt TJ, McLean RM, Forciea MA. Clinical guidelines committee of the American college of p. noninvasive treatments for acute, subacute, and chronic low back pain: a clinical practice guideline from the American college of physicians. Ann Intern Med. 2017;166(7):514–530. doi:10.7326/M16-2367
  • Jibril F, Sharaby S, Mohamed A, Wilby KJ. Intravenous versus oral acetaminophen for pain: systematic review of current evidence to support clinical decision-making. Can J Hosp Pharm. 2015;68(3):238–247. doi:10.4212/cjhp.v68i3.1458
  • McNicol ED, Ferguson MC, Haroutounian S, Carr DB, Schumann R. Single dose intravenous paracetamol or intravenous propacetamol for postoperative pain. Cochrane Database Syst Rev. 2016;5:CD007126. doi:10.1002/14651858.CD007126.pub3
  • Mitidieri A, Donati E, Caronzolo N. Injectable supersaturated acetaminophen solution for spinal administration. Available from: https://patents.google.com/patent/DK2874602T3/en. Accessed September 23, 2021.
  • Sharma CV, Long JH, Shah S, et al. First evidence of the conversion of paracetamol to AM404 in human cerebrospinal fluid. J Pain Res. 2017;10:2703–2709. doi:10.2147/JPR.S143500
  • Koppert W, Wehrfritz A, Korber N, et al. The cyclooxygenase isozyme inhibitors parecoxib and paracetamol reduce central hyperalgesia in humans. Pain. 2004;108(1–2):148–153. doi:10.1016/j.pain.2003.12.017
  • Yue Y, Collaku A. Correlation of pain reduction with fMRI BOLD response in osteoarthritis patients treated with paracetamol: Randomized, Double-Blind, Crossover Clinical Efficacy Study. Pain Med. 2018;19(2):355–367. doi:10.1093/pm/pnx157
  • Leopoldino AO, Machado GC, Ferreira PH, et al. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database Syst Rev. 2019;2:CD013273. doi:10.1002/14651858.CD013273
  • Hahn TW, Mogensen T, Lund C, et al. Analgesic effect of i.v. paracetamol: possible ceiling effect of paracetamol in postoperative pain. Acta Anaesthesiol Scand. 2003;47(2):138–145. doi:10.1034/j.1399-6576.2003.00046.x
  • Montserrat-de La Paz S, Garcia-Gimenez MD, Quilez AM, De la Puerta R, Fernandez-Arche A. Ginger rhizome enhances the anti-inflammatory and anti-nociceptive effects of paracetamol in an experimental mouse model of fibromyalgia. Inflammopharmacology. 2018;26(4):1093–1101. doi:10.1007/s10787-018-0450-8
  • Klinger-Gratz PP, Ralvenius WT, Neumann E, et al. Acetaminophen relieves inflammatory pain through CB1 cannabinoid receptors in the rostral ventromedial medulla. J Neurosci. 2018;38(2):322–334. doi:10.1523/JNEUROSCI.1945-17.2017
  • Bhagyashree A, Manikkoth S, Sequeira M, Nayak R, Rao SN. Central dopaminergic system plays a role in the analgesic action of paracetamol: preclinical evidence. Indian J Pharmacol. 2017;49(1):21–25. doi:10.4103/0253-7613.201029
  • Zhu Q, Sun Y, Mao L, et al. Antinociceptive effects of sinomenine in a rat model of postoperative pain. Br J Pharmacol. 2016;173(10):1693–1702. doi:10.1111/bph.13470
  • Kerckhove N, Mallet C, Francois A, et al. Ca(v)3.2 calcium channels: the key protagonist in the supraspinal effect of paracetamol. Pain. 2014;155(4):764–772. doi:10.1016/j.pain.2014.01.015
  • Vijayakaran K, Kesavan M, Kannan K, Sankar P, Tandan SK, Sarkar SN. Arsenic decreases antinociceptive activity of paracetamol: possible involvement of serotonergic and endocannabinoid receptors. Environ Toxicol Pharmacol. 2014;38(2):397–405. doi:10.1016/j.etap.2014.07.001
  • Dogrul A, Seyrek M, Akgul EO, Cayci T, Kahraman S, Bolay H. Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT(7) receptors. Eur J Pharmacol. 2012;677(1–3):93–101. doi:10.1016/j.ejphar.2011.12.016
  • Mallet C, Barriere DA, Ermund A, et al. TRPV1 in brain is involved in acetaminophen-induced antinociception. PLoS One. 2010;5(9):e12748. doi:10.1371/journal.pone.0012748
  • Crawley B, Saito O, Malkmus S, Fitzsimmons B, Hua XY, Yaksh TL. Acetaminophen prevents hyperalgesia in central pain cascade. Neurosci Lett. 2008;442(1):50–53. doi:10.1016/j.neulet.2008.06.062
  • Joshi SK, Mikusa JP, Weaver B, Honore P. Morphine and ABT-594 (a nicotinic acetylcholine agonist) exert centrally mediated antinociception in the rat cyclophosphamide cystitis model of visceral pain. J Pain. 2008;9(2):146–156. doi:10.1016/j.jpain.2007.09.004
  • Ruggieri V, Vitale G, Pini LA, Sandrini M. Differential involvement of opioidergic and serotonergic systems in the antinociceptive activity of N-arachidonoyl-phenolamine (AM404) in the rat: comparison with paracetamol. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(3):219–229. doi:10.1007/s00210-008-0284-9
  • Ottani A, Leone S, Sandrini M, Ferrari A, Bertolini A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol. 2006;531(1–3):280–281. doi:10.1016/j.ejphar.2005.12.015
  • Saito O, Aoe T, Yamamoto T. Analgesic effects of nonsteroidal antiinflammatory drugs, acetaminophen, and morphine in a mouse model of bone cancer pain. J Anesth. 2005;19(3):218–224. doi:10.1007/s00540-005-0323-3
  • Kwon MS, Shim EJ, Seo YJ, et al. Effect of aspirin and acetaminophen on proinflammatory cytokine-induced pain behavior in mice. Pharmacology. 2005;74(3):152–156. doi:10.1159/000084548
  • Lynch JJ 3rd, Wade CL, Zhong CM, Mikusa JP, Honore P. Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model. Pain. 2004;110(1–2):56–63. doi:10.1016/j.pain.2004.03.010
  • Bujalska M. Effect of nonselective and selective opioid receptors antagonists on antinociceptive action of acetaminophen [part III]. Pol J Pharmacol. 2004;56(5):539–545.
  • Bonnefont J, Alloui A, Chapuy E, Clottes E, Eschalier A. Orally administered paracetamol does not act locally in the rat formalin test: evidence for a supraspinal, serotonin-dependent antinociceptive mechanism. Anesthesiology. 2003;99(4):976–981. doi:10.1097/00000542-200310000-00034
  • Nagakura Y, Okada M, Kohara A, et al. Allodynia and hyperalgesia in adjuvant-induced arthritic rats: time course of progression and efficacy of analgesics. J Pharmacol Exp Ther. 2003;306(2):490–497. doi:10.1124/jpet.103.050781
  • Bujalska M, Gumulka WS. Effect of cyclooxygenase and NO synthase inhibitors on antinociceptive action of acetaminophen. Pol J Pharmacol. 2001;53(4):341–350.
  • Choi SS, Lee JK, Suh HW. Antinociceptive profiles of aspirin and acetaminophen in formalin, substance P and glutamate pain models. Brain Res. 2001;921(1–2):233–239. doi:10.1016/S0006-8993(01)03126-2
  • Al-Swayeh OA, Futter LE, Clifford RH, Moore PK. Nitroparacetamol exhibits anti-inflammatory and anti-nociceptive activity. Br J Pharmacol. 2000;130(7):1453–1456. doi:10.1038/sj.bjp.0703509
  • Pelissier T, Alloui A, Caussade F, et al. Paracetamol exerts a spinal antinociceptive effect involving an indirect interaction with 5-hydroxytryptamine3 receptors: in vivo and in vitro evidence. J Pharmacol Exp Ther. 1996;278(1):8–14.
  • Granados-Soto V, Flores-Murrieta FJ, Lopez-Munoz FJ, Salazar LA, Villarreal JE, Castaneda-Hernandez G. Relationship between paracetamol plasma levels and its analgesic effect in the rat. J Pharm Pharmacol. 1992;44(9):741–744. doi:10.1111/j.2042-7158.1992.tb05511.x
  • Okuyama S, Aihara H. The mode of action of analgesic drugs in adjuvant arthritic rats as an experimental model of chronic inflammatory pain: possible central analgesic action of acidic nonsteroidal antiinflammatory drugs. Jpn J Pharmacol. 1984;35(2):95–103. doi:10.1016/S0021-5198(19)38076-X
  • Dalmann R, Daulhac L, Antri M, Eschalier A, Mallet C. Supra-spinal FAAH is required for the analgesic action of paracetamol in an inflammatory context. Neuropharmacology. 2015;91:63–70. doi:10.1016/j.neuropharm.2014.11.006
  • Viberg H, Eriksson P, Gordh T, Fredriksson A. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice. Toxicol Sci. 2014;138(1):139–147. doi:10.1093/toxsci/kft329
  • Aizawa N, Wyndaele JJ. Effects of phenazopyridine on rat bladder primary afferent activity, and comparison with lidocaine and acetaminophen. Neurourol Urodyn. 2010;29(8):1445–1450. doi:10.1002/nau.20886
  • Soukupova M, Dolezal T, Krsiak M. The synergistic interaction between rilmenidine and paracetamol in the writhing test in mice. Naunyn Schmiedebergs Arch Pharmacol. 2009;379(6):575–580. doi:10.1007/s00210-009-0402-3
  • Qiu HX, Liu J, Kong H, Liu Y, Mei XG. Isobolographic analysis of the antinociceptive interactions between ketoprofen and paracetamol. Eur J Pharmacol. 2007;557(2–3):141–146. doi:10.1016/j.ejphar.2006.11.017
  • Mallet C, Daulhac L, Bonnefont J, et al. Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. Pain. 2008;139(1):190–200. doi:10.1016/j.pain.2008.03.030
  • Bianchi M, Panerai AE. The dose-related effects of paracetamol on hyperalgesia and nociception in the rat. Br J Pharmacol. 1996;117(1):130–132. doi:10.1111/j.1476-5381.1996.tb15164.x
  • Mburu DN. Evaluation of the anti-inflammatory effects of a low dose of acetaminophen following surgery in dogs. J Vet Pharmacol Ther. 1991;14(1):109–111. doi:10.1111/j.1365-2885.1991.tb00811.x
  • Behrendt WA, Cserepes J. Acute toxicity and analgesic action of a combination of buclizine, codeine and paracetamol (‘Migraleve’) in tablet and suppository form in rats. Pharmatherapeutica. 1985;4(5):322–331.
  • Sewell RD, Gonzalez JP, Pugh J. Comparison of the relative effects of aspirin, mefenamic acid, dihydrocodeine, dextropropoxyphene and paracetamol on visceral pain, respiratory rate and prostaglandin biosynthesis. Arch Int Pharmacodyn Ther. 1984;268(2):325–334.
  • Pircio AW, Buyniski JP, Roebel LE. Pharmacological effects of a combination of butorphanol and acetaminophen. Arch Int Pharmacodyn Ther. 1978;235(1):116–123.
  • Mititelu Tartau L, Popa EG, Lupusoru RV, Lupusoru CE, Stoleriu I, Ochiuz L. Synergic effects of pregabalin-acetaminophen combination in somatic and visceral nociceptive reactivity. Pharmacology. 2014;93(5–6):253–259. doi:10.1159/000362649
  • Vinegar R, Truax JF, Selph JL. Quantitative comparison of the analgesic and anti-inflammatory activities of aspirin, phenacetin and acetaminophen in rodents. Eur J Pharmacol. 1976;37(1):23–30. doi:10.1016/0014-2999(76)90004-2
  • Micov A, Tomic M, Pecikoza U, Ugresic N, Stepanovic-Petrovic R. Levetiracetam synergises with common analgesics in producing antinociception in a mouse model of painful diabetic neuropathy. Pharmacol Res. 2015;97:131–142. doi:10.1016/j.phrs.2015.04.014
  • Shinozaki T, Yamada T, Nonaka T, Yamamoto T. Acetaminophen and non-steroidal anti-inflammatory drugs interact with morphine and tramadol analgesia for the treatment of neuropathic pain in rats. J Anesth. 2015;29(3):386–395. doi:10.1007/s00540-014-1953-0
  • Flower RJ, Vane JR. Inhibition of prostaglandin synthetase in brain explains the anti-pyretic activity of paracetamol (4-acetamidophenol). Nature. 1972;240(5381):410–411. doi:10.1038/240410a0
  • Zapata-Morales JR, Alonso-Castro AJ, Perez-Gutierrez S, et al. Participation of ATP-sensitive K+ channels and mu-opioid receptors in the antinociceptive synergism of the paracetamol-tapentadol co-administration in the formalin-induced pain assay in mice. Drug Dev Res. 2018;79(8):400–405. doi:10.1002/ddr.21476
  • Li Q, Zhuang Q, Gu Y, et al. Enhanced analgesic effects of nefopam in combination with acetaminophen in rodents. Biomed Rep. 2018;8(2):176–183. doi:10.3892/br.2017.1032
  • Fukushima A, Mamada K, Iimura A, Ono H. Supraspinal-selective TRPV1 desensitization induced by intracerebroventricular treatment with resiniferatoxin. Sci Rep. 2017;7(1):12452. doi:10.1038/s41598-017-12717-5
  • Siemian JN, Li J, Zhang Y, Li JX. Interactions between imidazoline I2 receptor ligands and acetaminophen in adult male rats: antinociception and schedule-controlled responding. Psychopharmacology (Berl). 2016;233(5):873–882. doi:10.1007/s00213-015-4166-9
  • Karandikar YS, Belsare P, Panditrao A. Effect of drugs modulating serotonergic system on the analgesic action of paracetamol in mice. Indian J Pharmacol. 2016;48(3):281–285. doi:10.4103/0253-7613.182874
  • Raskovic A, Milanovic I, Pavlovic N, Milijasevic B, Ubavic M, Mikov M. Analgesic effects of rosemary essential oil and its interactions with codeine and paracetamol in mice. Eur Rev Med Pharmacol Sci. 2015;19(1):165–172.
  • Fresno N, Perez-Fernandez R, Goicoechea C, et al. Adamantyl analogues of paracetamol as potent analgesic drugs via inhibition of TRPA1. PLoS One. 2014;9(12):e113841. doi:10.1371/journal.pone.0113841
  • Minville V, Fourcade O, Mazoit JX, Girolami JP, Tack I. Ondansetron does not block paracetamol-induced analgesia in a mouse model of fracture pain. Br J Anaesth. 2011;106(1):112–118. doi:10.1093/bja/aeq277
  • Tomic MA, Vuckovic SM, Stepanovic-Petrovic RM, Ugresic ND, Prostran MS, Boskovic B. Synergistic interactions between paracetamol and oxcarbazepine in somatic and visceral pain models in rodents. Anesth Analg. 2010;110(4):1198–1205. doi:10.1213/ANE.0b013e3181cbd8da
  • Mitchell D, Gelgor L, Weber J, Kamerman PR. Antihypernociceptive synergy between ibuprofen, paracetamol and codeine in rats. Eur J Pharmacol. 2010;642(1–3):86–92. doi:10.1016/j.ejphar.2010.06.004
  • Godfrey L, Yan L, Clarke GD, Ledent C, Kitchen I, Hourani SM. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur J Pharmacol. 2006;531(1–3):80–86. doi:10.1016/j.ejphar.2005.12.004
  • Sandrini M, Pini LA, Vitale G. Differential involvement of central 5-HT1B and 5-HT3 receptor subtypes in the antinociceptive effect of paracetamol. Inflamm Res. 2003;52(8):347–352. doi:10.1007/s00011-003-1185-5
  • Sandrini M, Vitale G, Ottani A, Pini LA. The potentiation of analgesic activity of paracetamol plus morphine involves the serotonergic system in rat brain. Inflamm Res. 1999;48(3):120–127. doi:10.1007/s000110050434
  • Tjolsen A, Lund A, Hole K. The role of descending noradrenergic systems in regulation of nociception: the effects of intrathecally administered alpha-adrenoceptor antagonists and clonidine. Pain. 1990;43(1):113–120. doi:10.1016/0304-3959(90)90056-J
  • Liu J, Reid AR, Sawynok J. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neurosci Lett. 2013;536:64–68. doi:10.1016/j.neulet.2012.12.052
  • Miranda HF, Noriega V, Prieto JC. Previous administration of naltrexone did not change synergism between paracetamol and tramadol in mice. Pharmacol Biochem Behav. 2012;102(1):72–76. doi:10.1016/j.pbb.2012.03.008
  • Im KS, Jung HJ, Kim JB, et al. The antinociceptive effect of acetaminophen in a rat model of neuropathic pain. Kaohsiung J Med Sci. 2012;28(5):251–258. doi:10.1016/j.kjms.2011.11.003
  • Sawynok J, Reid AR. Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A(1) receptors. Eur J Pharmacol. 2012;674(2–3):248–254. doi:10.1016/j.ejphar.2011.10.036
  • Rezende RM, Franca DS, Menezes GB, dos Reis WGP, Bakhle YS, Francischi JN. Different mechanisms underlie the analgesic actions of paracetamol and dipyrone in a rat model of inflammatory pain. Br J Pharmacol. 2008;153(4):760–768. doi:10.1038/sj.bjp.0707630
  • Luccarini P, Childeric A, Gaydier AM, Voisin D, Dallel R. The orofacial formalin test in the mouse: a behavioral model for studying physiology and modulation of trigeminal nociception. J Pain. 2006;7(12):908–914. doi:10.1016/j.jpain.2006.04.010
  • Abbott FV, Hellemans KG. Phenacetin, acetaminophen and dipyrone: analgesic and rewarding effects. Behav Brain Res. 2000;112(1–2):177–186. doi:10.1016/S0166-4328(00)00179-0
  • Srikiatkhachorn A, Tarasub N, Govitrapong P. Acetaminophen-induced antinociception via central 5-HT(2A) receptors. Neurochem Int. 1999;34(6):491–498. doi:10.1016/S0197-0186(99)00023-6
  • Pini LA, Sandrini M, Vitale G. The antinociceptive action of paracetamol is associated with changes in the serotonergic system in the rat brain. Eur J Pharmacol. 1996;308(1):31–40. doi:10.1016/0014-2999(96)00261-0
  • Bjorkman R. Central antinociceptive effects of non-steroidal anti-inflammatory drugs and paracetamol. Experimental studies in the rat. Acta Anaesthesiol Scand Suppl. 1995;103:1–44.
  • Bjorkman R, Hallman KM, Hedner J, Hedner T, Henning M. Acetaminophen blocks spinal hyperalgesia induced by NMDA and substance P. Pain. 1994;57(3):259–264. doi:10.1016/0304-3959(94)90001-9
  • Kanui TI, Karim F, Towett PK. The formalin test in the naked mole-rat (heterocephalus glaber): analgesic effects of morphine, nefopam and paracetamol. Brain Res. 1993;600(1):123–126. doi:10.1016/0006-8993(93)90409-g
  • Malmberg AB, Yaksh TL. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharmacol Exp Ther. 1992;263(1):136–146.
  • Tjolsen A, Lund A, Hole K. Antinociceptive effect of paracetamol in rats is partly dependent on spinal serotonergic systems. Eur J Pharmacol. 1991;193(2):193–201. doi:10.1016/0014-2999(91)90036-P
  • Carlsson KH, Jurna I. Central analgesic effect of paracetamol manifested by depression of nociceptive activity in thalamic neurones of the rat. Neurosci Lett. 1987;77(3):339–343. doi:10.1016/0304-3940(87)90524-6
  • Ferreira SH, Lorenzetti BB, Correa FM. Central and peripheral antialgesic action of aspirin-like drugs. Eur J Pharmacol. 1978;53(1):39–48. doi:10.1016/0014-2999(78)90265-0
  • Hunskaar S, Fasmer OB, Hole K. Acetylsalicylic acid, paracetamol and morphine inhibit behavioral responses to intrathecally administered substance P or capsaicin. Life Sci. 1985;37(19):1835–1841. doi:10.1016/0024-3205(85)90227-9
  • Hama AT, Sagen J. Cannabinoid receptor-mediated antinociception with Acetaminophen drug combinations in rats with neuropathic spinal cord injury pain. Neuropharmacology. 2010;58(4–5):758–766. doi:10.1016/j.neuropharm.2009.12.010
  • Munro G, Christensen JK, Erichsen HK, et al. NS383 selectively inhibits acid-sensing ion channels containing 1a and 3 subunits to reverse inflammatory and neuropathic hyperalgesia in rats. CNS Neurosci Ther. 2016;22(2):135–145. doi:10.1111/cns.12487
  • Sandrini M, Vitale G, Ruggieri V, Pini LA. Effect of acute and repeated administration of paracetamol on opioidergic and serotonergic systems in rats. Inflamm Res. 2007;56(4):139–142. doi:10.1007/s00011-006-6113-z
  • Roca-Vinardell A, Ortega-Alvaro A, Gibert-Rahola J, Mico JA. The role of 5-HT1A/B autoreceptors in the antinociceptive effect of systemic administration of acetaminophen. Anesthesiology. 2003;98(3):741–747. doi:10.1097/00000542-200303000-00025
  • Andersson DA, Gentry C, Alenmyr L, et al. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid delta(9)-tetrahydrocannabiorcol. Nat Commun. 2011;2(1):551. doi:10.1038/ncomms1559
  • Cui JG, Zhang X, Zhao YH, Chen C, Bazan N. Allodynia and hyperalgesia suppression by a novel analgesic in experimental neuropathic pain. Biochem Biophys Res Commun. 2006;350(2):358–363. doi:10.1016/j.bbrc.2006.09.055
  • Alloui A, Chassaing C, Schmidt J, et al. Paracetamol exerts a spinal, tropisetron-reversible, antinociceptive effect in an inflammatory pain model in rats. Eur J Pharmacol. 2002;443(1–3):71–77. doi:10.1016/S0014-2999(02)01578-9
  • Raffa RB, Stone DJ Jr., Tallarida RJ. Unexpected and pronounced antinociceptive synergy between spinal acetaminophen (paracetamol) and phentolamine. Eur J Pharmacol. 2001;412(2):R1–2. doi:10.1016/S0014-2999(01)00722-1
  • Jensen FM, Dahl JB, Frigast C. Direct spinal effect of intrathecal acetaminophen on visceral noxious stimulation in rabbits. Acta Anaesthesiol Scand. 1992;36(8):837–841. doi:10.1111/j.1399-6576.1992.tb03574.x
  • Seo YJ, Kwon MS, Choi HW, et al. The differential effects of acetaminophen on lipopolysaccharide induced hyperalgesia in various mouse pain models. Pharmacol Biochem Behav. 2008;91(1):121–127. doi:10.1016/j.pbb.2008.06.020
  • Matsunaga A, Kawamoto M, Shiraishi S, et al. Intrathecally administered COX-2 but not COX-1 or COX-3 inhibitors attenuate streptozotocin-induced mechanical hyperalgesia in rats. Eur J Pharmacol. 2007;554(1):12–17. doi:10.1016/j.ejphar.2006.09.072
  • Curros-Criado MM, Herrero JF. Antinociceptive effects of NCX-701 (nitro-paracetamol) in neuropathic rats: enhancement of antinociception by co-administration with gabapentin. Br J Pharmacol. 2009;158(2):601–609. doi:10.1111/j.1476-5381.2009.00343.x
  • Bonnefont J, Chapuy E, Clottes E, Alloui A, Eschalier A. Spinal 5-HT1A receptors differentially influence nociceptive processing according to the nature of the noxious stimulus in rats: effect of WAY-100635 on the antinociceptive activities of paracetamol, venlafaxine and 5-HT. Pain. 2005;114(3):482–490. doi:10.1016/j.pain.2005.01.019
  • Romero-Sandoval EA, Mazario J, Howat D, Herrero JF. NCX-701 (nitroparacetamol) is an effective antinociceptive agent in rat withdrawal reflexes and wind-up. Br J Pharmacol. 2002;135(6):1556–1562. doi:10.1038/sj.bjp.0704589
  • Courade JP, Chassaing C, Bardin L, Alloui A, Eschalier A. 5-HT receptor subtypes involved in the spinal antinociceptive effect of Acetaminophen in rats. Eur J Pharmacol. 2001;432(1):1–7. doi:10.1016/S0014-2999(01)01464-9
  • Shibasaki J, Konishi R, Kitasaki T, Koizumi T. Relationship between blood levels and analgesic effects of acetaminophen in mice. Chem Pharm Bull (Tokyo). 1979;27(1):129–138. doi:10.1248/cpb.27.129
  • Pelissier T, Alloui A, Paeile C, Eschalier A. Evidence of a central antinociceptive effect of paracetamol involving spinal 5HT3 receptors. Neuroreport. 1995;6(11):1546–1548. doi:10.1097/00001756-199507310-00020
  • Raffa RB, Stone DJ Jr., Tallarida RJ. Discovery of “self-synergistic” spinal/supraspinal antinociception produced by acetaminophen (paracetamol). J Pharmacol Exp Ther. 2000;295(1):291–294.
  • Dani M, Guindon J, Lambert C, Beaulieu P. The local antinociceptive effects of paracetamol in neuropathic pain are mediated by cannabinoid receptors. Eur J Pharmacol. 2007;573(1–3):214–215. doi:10.1016/j.ejphar.2007.07.012
  • Deciga-Campos M, Ortiz-Andrade R. Enhancement of antihyperalgesia by the coadministration of N-palmitoylethanolamide and acetaminophen in diabetic rats. Drug Dev Res. 2015;76(5):228–234. doi:10.1002/ddr.21259
  • Gonzalez-Trujano ME, Uribe-Figueroa G, Hidalgo-Figueroa S, Martinez AL, Deciga-Campos M, Navarrete-Vazquez G. Synthesis and antinociceptive evaluation of bioisosteres and hybrids of naproxen, ibuprofen and paracetamol. Biomed Pharmacother. 2018;101:553–562. doi:10.1016/j.biopha.2018.02.122
  • Lopez-Canul M, Comai S, Dominguez-Lopez S, Granados-Soto V, Gobbi G. Antinociceptive properties of selective MT(2) melatonin receptor partial agonists. Eur J Pharmacol. 2015;764:424–432. doi:10.1016/j.ejphar.2015.07.010
  • Girard P, Niedergang B, Pansart Y, Coppe MC, Verleye M. Systematic evaluation of the nefopam-paracetamol combination in rodent models of antinociception. Clin Exp Pharmacol Physiol. 2011;38(3):170–178. doi:10.1111/j.1440-1681.2011.05477.x
  • Wong CL, Wai MK, Roberts MB. The effect of aspirin and paracetamol on the increased naloxone potency induced by morphine pretreatment. Eur J Pharmacol. 1980;67(2–3):241–246. doi:10.1016/0014-2999(80)90504-x
  • Girard P, Pansart Y, Coppe MC, Niedergang B, Gillardin JM. Modulation of paracetamol and nefopam antinociception by serotonin 5-HT(3) receptor antagonists in mice. Pharmacology. 2009;83(4):243–246. doi:10.1159/000207448
  • O’Neil MJ. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Royal Society of Chemistry; 2013.
  • Samuel H, He Y, Jain P. Handbook of Aqueous Solubility Data Second Edition. CRC Press; 2010:492.
  • Kalatzis E. Reactions of acetaminophen in pharmaceutical dosage forms: its proposed acetylation by acetylsalicylic acid. J Pharm Sci. 1970;59(2):193–196. doi:10.1002/jps.2600590211
  • Gilpin RK, Zhou W. Studies of the thermal degradation of acetaminophen using a conventional HPLC approach and electrospray ionization-mass spectrometry. J Chromatogr Sci. 2004;42(1):15–20. doi:10.1093/chromsci/42.1.15
  • Fairbrother JE. Analytical Profiles of Drug Substances. Vol. 3. Acetominophen. Academic Press; 1974:1–110.
  • Kelava T, Cavar I, Culo F. Influence of small doses of various drug vehicles on acetaminophen-induced liver injury. Can J Physiol Pharmacol. 2010;88(10):960–967. doi:10.1139/y10-065
  • D’Amour F, Smith D. A method for determining loss of pain sensation. J Pharmacol Exp Ther. 1941;72:74–79.
  • Woolfe G, MacDonald A. The evaluation of the analgesic action of pethidine hydrochloride (demerol). J Pharmacol Exp Ther. 1944;80:300–307.
  • Dirig DM, Salami A, Rathbun ML, Ozaki GT, Yaksh TL. Characterization of variables defining hindpaw withdrawal latency evoked by radiant thermal stimuli. J Neurosci Methods. 1997;76(2):183–191. doi:10.1016/s0165-0270(97)00097-6
  • Barrot M. Tests and models of nociception and pain in rodents. Neuroscience. 2012;211:39–50. doi:10.1016/j.neuroscience.2011.12.041
  • Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflamed tissue. Arch Int Pharmacodyn Ther. 1957;111(4):409–419.
  • Libert F, Bonnefont J, Bourinet E, et al. Acetaminophen: a central analgesic drug that involves a spinal tropisetron-sensitive, non-5-HT(3) receptor-mediated effect. Mol Pharmacol. 2004;66(3):728–734. doi:10.1124/mol.66.3
  • Carlsson KH, Monzel W, Jurna I. Depression by morphine and the non-opioid analgesic agents, metamizol (dipyrone), lysine acetylsalicylate, and paracetamol, of activity in rat thalamus neurones evoked by electrical stimulation of nociceptive afferents. Pain. 1988;32(3):313–326. doi:10.1016/0304-3959(88)90043-7
  • Davidson N, Southwick CA. The effect of topically applied amino acids on primary afferent terminal excitability in the rat cuneate nucleus. J Physiol. 1970;210(2):172P–173P.
  • Hokfelt T, Kellerth JO, Nilsson G, Pernow B. Experimental immunohistochemical studies on the localization and distribution of substance P in cat primary sensory neurons. Brain Res. 1975;100(2):235–252. doi:10.1016/0006-8993(75)90481-3
  • Woller SA, Eddinger KA, Corr M, Yaksh TL. An overview of pathways encoding nociception. Clin Exp Rheumatol. 2017;107(5):40–46.
  • Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain. 1996;64(3):493–501. doi:10.1016/0304-3959(95)01441-1
  • Yaksh TL, Ozaki G, McCumber D, et al. An automated flinch detecting system for use in the formalin nociceptive bioassay. J Appl Physiol. 2001;90(6):2386–2402. doi:10.1152/jappl.2001.90.6.2386
  • Regmi B, Shah MK. Possible implications of animal models for the assessment of visceral pain. Animal Model Exp Med. 2020;3(3):215–228. doi:10.1002/ame2.12130
  • Greenwood-van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol. 2015;308(11):G885–903. doi:10.1152/ajpgi.00463.2014
  • Birder L, Andersson KE. Animal modelling of interstitial cystitis/bladder pain syndrome. Int Neurourol J. 2018;22(Suppl 1):S3–9. doi:10.5213/inj.1835062.531
  • Simmons JK, Hildreth BE 3rd, Supsavhad W, et al. Animal models of bone metastasis. Vet Pathol. 2015;52(5):827–841. doi:10.1177/0300985815586223
  • Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW. Bone cancer pain. Ann N Y Acad Sci. 2010;1198(1):173–181. doi:10.1111/j.1749-6632.2009.05429.x
  • Sorkin LS, Yaksh TL. Behavioral models of pain states evoked by physical injury to the peripheral nerve. Neurotherapeutics. 2009;6(4):609–619. doi:10.1016/j.nurt.2009.07.007
  • Grothey A. Clinical management of oxaliplatin-associated neurotoxicity. Clin Colorectal Cancer. 2005;5(Suppl 1):S38–46. doi:10.3816/CCC.2005.s.006
  • Lee-Kubli CA, Calcutt NA. Painful neuropathy: mechanisms. Handb Clin Neurol. 2014;126:533–557. doi:10.1016/B978-0-444-53480-4.00034-5
  • Lee-Kubli C, Marshall AG, Malik RA, Calcutt NA. The H-reflex as a biomarker for spinal disinhibition in painful diabetic neuropathy. Curr Diab Rep. 2018;18(1):1. doi:10.1007/s11892-018-0969-5
  • Apostolidis L, Schwarz D, Xia A, et al. Dorsal root ganglia hypertrophy as in vivo correlate of oxaliplatin-induced polyneuropathy. PLoS One. 2017;12(8):e0183845. doi:10.1371/journal.pone.0183845
  • Chaturvedi PR, Decker CJ, Odinecs A. Prediction of pharmacokinetic properties using experimental approaches during early drug discovery. Curr Opin Chem Biol. 2001;5(4):452–463. doi:10.1016/s1367-5931(00)00228-3
  • Rhomberg L, Lewandowski T. Methods for identifying a default cross-species scaling factor. Hum Ecol Risk Assess. 2006;12(6):1094–1127. doi:10.1080/10807030600977269
  • Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31. doi:10.4103/0976-0105.177703
  • Cummings AJ, King ML, Martin BK. A kinetic study of drug elimination: the excretion of paracetamol and its metabolites in man. Br J Pharmacol Chemother. 1967;29(2):150–157. doi:10.1111/j.1476-5381.1967.tb01948.x
  • Galinsky RE, Levy G. Dose- and time-dependent elimination of acetaminophen in rats: pharmacokinetic implications of cosubstrate depletion. J Pharmacol Exp Ther. 1981;219(1):14–20.
  • McGill MR, Jaeschke H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res. 2013;30(9):2174–2187. doi:10.1007/s11095-013-1007-6
  • Hogestatt ED, Jonsson BA, Ermund A, et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydrolase-dependent arachidonic acid conjugation in the nervous system. J Biol Chem. 2005;280(36):31405–31412. doi:10.1074/jbc.M501489200
  • Woolbright BL, Jaeschke H. Role of the inflammasome in Acetaminophen-induced liver injury and acute liver failure. J Hepatol. 2017;66(4):836–848. doi:10.1016/j.jhep.2016.11.017
  • Athersuch TJ, Antoine DJ, Boobis AR, et al. Paracetamol metabolism, hepatotoxicity, biomarkers and therapeutic interventions: a perspective. Toxicol Res (Camb). 2018;7(3):347–357. doi:10.1039/c7tx00340d
  • Courad JP, Besse D, Delchambre C, et al. Acetaminophen distribution in the rat central nervous system. Life Sci. 2001;69(12):1455–1464. doi:10.1016/s0024-3205(01)01228-0
  • Godfrey L, Morselli A, Bennion P, Clarke GD, Hourani SM, Kitchen I. An investigation of binding sites for paracetamol in the mouse brain and spinal cord. Eur J Pharmacol. 2005;508(1–3):99–106. doi:10.1016/j.ejphar.2004.11.061
  • Raffa RB, Codd EE. Lack of binding of acetaminophen to 5-HT receptor or uptake sites (or eleven other binding/uptake assays). Life Sci. 1996;59(2):PL37–40. doi:10.1016/0024-3205(96)00273-1
  • Svensson CI, Yaksh TL. The spinal phospholipase-cyclooxygenase-prostanoid cascade in nociceptive processing. Annu Rev Pharmacol Toxicol. 2002;42:553–583. doi:10.1146/annurev.pharmtox.42.092401.143905
  • Patrignani P, Patrono C. Cyclooxygenase inhibitors: from pharmacology to clinical read-outs. Biochim Biophys Acta. 2015;1851(4):422–432. doi:10.1016/j.bbalip.2014.09.016
  • Lucas R, Warner TD, Vojnovic I, Mitchell JA. Cellular mechanisms of acetaminophen: role of cyclo-oxygenase. FASEB J. 2005;19(6):635–637. doi:10.1096/fj.04-2437fje
  • Ayoub SS, Colville-Nash PR, Willoughby DA, Botting RM. The involvement of a cyclooxygenase 1 gene-derived protein in the antinociceptive action of paracetamol in mice. Eur J Pharmacol. 2006;538(1–3):57–65. doi:10.1016/j.ejphar.2006.03.061
  • Smith HS. Potential analgesic mechanisms of acetaminophen. Pain Physician. 2009;12(1):269–280. doi:10.36076/ppj.2009/12/269
  • Rao P, Knaus EE. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008;11(2):81s–110s. doi:10.18433/J3T886
  • Nandakishore R, Yalavarthi PR, Kiran YR, Rajapranathi M. Selective cyclooxygenase inhibitors: current status. Curr Drug Discov Technol. 2014;11(2):127–132. doi:10.2174/1570163811666140127123717
  • Yaksh TL, Dirig DM, Malmberg AB. Mechanism of action of nonsteroidal anti-inflammatory drugs. Cancer Invest. 1998;16(7):509–527. doi:10.3109/07357909809011705
  • Yaksh TL, Dirig DM, Conway CM, Svensson C, Luo ZD, Isakson PC. The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci. 2001;21(16):5847–5853. doi:10.1523/JNEUROSCI.21-16-05847.2001
  • Greco A, Ajmone-Cat MA, Nicolini A, Sciulli MG, Minghetti L. Paracetamol effectively reduces prostaglandin E2 synthesis in brain macrophages by inhibiting enzymatic activity of cyclooxygenase but not phospholipase and prostaglandin E synthase. J Neurosci Res. 2003;71(6):844–852. doi:10.1002/jnr.10543
  • Turman MV, Kingsley PJ, Marnett LJ. Characterization of an AM404 analogue, N-(3-hydroxyphenyl)arachidonoylamide, as a substrate and inactivator of prostaglandin endoperoxide synthase. Biochemistry. 2009;48(51):12233–12241. doi:10.1021/bi901181z
  • Saliba SW, Marcotegui AR, Fortwangler E, et al. AM404, paracetamol metabolite, prevents prostaglandin synthesis in activated microglia by inhibiting COX activity. J Neuroinflammation. 2017;14(1):246. doi:10.1186/s12974-017-1014-3
  • Caballero FJ, Navarrete CM, Hess S, et al. The acetaminophen-derived bioactive N-acylphenolamine AM404 inhibits NFAT by targeting nuclear regulatory events. Biochem Pharmacol. 2007;73(7):1013–1023. doi:10.1016/j.bcp.2006.12.001
  • Zygmunt PM, Chuang -H-H, Movahed P, et al. The anandamide transport inhibitor AM404 activates vanilloid receptors. Eur J Pharmacol. 2000;396(1):39–42. doi:10.1016/S0014-2999(00)00207-7
  • Stueber T, Meyer S, Jangra A, Hage A, Eberhardt M, Leffler A. Activation of the capsaicin-receptor TRPV1 by the acetaminophen metabolite N-arachidonoylaminophenol results in cytotoxicity. Life Sci. 2018;194:67–74. doi:10.1016/j.lfs.2017.12.024
  • Wang Y, Lin W, Wu N, et al. An insight into paracetamol and its metabolites using molecular docking and molecular dynamics simulation. J Mol Model. 2018;24(9):243. doi:10.1007/s00894-018-3790-9
  • Nassini R, Materazzi S, Andre E, et al. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 2010;24(12):4904–4916. doi:10.1096/fj.10-162438
  • De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di Marzo V. Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett. 2000;483(1):52–56. doi:10.1016/S0014-5793(00)02082-2
  • Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D. Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science. 1997;277(5329):1094–1097. doi:10.1126/science.277.5329.1094
  • Howlett AC, Abood ME. CB1 and CB2 receptor pharmacology. Adv Pharmacol. 2017;80:169–206. doi:10.1016/bs.apha.2017.03.007
  • Busquets-Garcia A, Bains J, Marsicano G. CB1 receptor signaling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology. 2018;43(1):4–20. doi:10.1038/npp.2017.206
  • Fu J, Bottegoni G, Sasso O, et al. A catalytically silent FAAH-1 variant drives anandamide transport in neurons. Nat Neurosci. 2011;15(1):64. doi:10.1038/nn.2986
  • Barriere DA, Mallet C, Blomgren A, et al. Fatty acid amide hydrolase-dependent generation of antinociceptive drug metabolites acting on TRPV1 in the brain. PLoS One. 2013;8(8):e70690. doi:10.1371/journal.pone.0070690
  • Evans RM, Scott RH, Ross RA. Chronic exposure of sensory neurones to increased levels of nerve growth factor modulates CB1/TRPV1 receptor crosstalk. Br J Pharmacol. 2007;152(3):404–413. doi:10.1038/sj.bjp.0707411
  • Weinhold P, Gratzke C, Streng T, Stief C, Andersson KE, Hedlund P. TRPA1 receptor induced relaxation of the human urethra involves TRPV1 and cannabinoid receptor mediated signals, and cyclooxygenase activation. J Urol. 2010;183(5):2070–2076. doi:10.1016/j.juro.2009.12.093
  • Tanda G. Preclinical studies on the reinforcing effects of cannabinoids. A tribute to the scientific research of Dr. Steve Goldberg. Psychopharmacology (Berl). 2016;233(10):1845–1866. doi:10.1007/s00213-016-4244-7
  • Tanda G, Goldberg SR. Cannabinoids: reward, dependence, and underlying neurochemical mechanisms–a review of recent preclinical data. Psychopharmacology (Berl). 2003;169(2):115–134. doi:10.1007/s00213-003-1485-z
  • Nazarian A, Are D, Tenayuca JM. Acetaminophen modulation of hydrocodone reward in rats. Pharmacol Biochem Behav. 2011;99(3):307–310. doi:10.1016/j.pbb.2011.05.003
  • Jouanjus E, Guernec G, Lapeyre-Mestre M; French Addictovigilance N. Medical prescriptions falsified by the patients: a 12-year national monitoring to assess prescription drug diversion. Fundam Clin Pharmacol. 2018;32(3):306–322. doi:10.1111/fcp.12356
  • Suzuki R, Rahman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury. Brain Res. 2004;1019(1–2):68–76. doi:10.1016/j.brainres.2004.05.108
  • Dupuis A, Wattiez AS, Pinguet J, et al. Increasing spinal 5-HT2A receptor responsiveness mediates anti-allodynic effect and potentiates fluoxetine efficacy in neuropathic rats. Evidence for GABA release. Pharmacol Res. 2017;118:93–103. doi:10.1016/j.phrs.2016.09.021
  • Miller KE, Salvatierra AT. Apposition of enkephalin- and neurotensin-immunoreactive neurons by serotonin-immunoreactive varicosities in the rat spinal cord. Neuroscience. 1998;85(3):837–846. doi:10.1016/S0306-4522(97)00522-8
  • Pini LA, Vitale G, Ottani A, Sandrini M. Naloxone-reversible antinociception by paracetamol in the rat. J Pharmacol Exp Ther. 1997;280(2):934–940.
  • Pickering G, Loriot MA, Libert F, Eschalier A, Beaune P, Dubray C. Analgesic effect of acetaminophen in humans: first evidence of a central serotonergic mechanism. Clin Pharmacol Ther. 2006;79(4):371–378. doi:10.1016/j.clpt.2005.12.307
  • Durso GR, Luttrell A, Way BM. Way BM over-the-counter relief from pains and pleasures alike: acetaminophen blunts evaluation sensitivity to both negative and positive stimuli. Psychol Sci. 2015;26(6):750–758. doi:10.1177/0956797615570366
  • Dewall CN, Macdonald G, Webster GD, et al. Acetaminophen reduces social pain: behavioral and neural evidence. Psychol Sci. 2010;21(7):931–937. doi:10.1177/0956797610374741
  • Grundy L, Caldwell A, Brierley SM. Mechanisms underlying overactive bladder and interstitial cystitis/painful bladder syndrome. Front Neurosci. 2018;12:931. doi:10.3389/fnins.2018.00931