176
Views
0
CrossRef citations to date
0
Altmetric
Review

Spoken and Unspoken Matters Regarding the Use of Opioids in Cancer

& ORCID Icon
Pages 909-924 | Published online: 05 Apr 2022

References

  • Sullivan DR, Chan B, Lapidus JA, et al. Association of early palliative care use with survival and place of death among patients with advanced lung cancer receiving care in the Veterans Health Administration. JAMA Oncol. 2019;5(12):1702–1709. doi:10.1001/jamaoncol.2019.3105
  • Weiland G, Frisman D, Taylor P. Affinity labeling of the subunits of the membrane associated cholinergic receptor. Mol Pharmacol. 1979;15:213–226.
  • Chen Y, Mestek A, Liu J, Yu L. Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. Biochem. 1993;295(Pt3):625–628. doi:10.1042/bj2950625
  • Yasuda K, Raynor K, Kong H, et al. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci USA. 1993;90(14):6736–6740. doi:10.1073/pnas.90.14.6736
  • Vass M, Kooistra AJ, Yang D, Stevens RC, Wang MW, de Graaf C. Chemical diversity in the G protein-coupled receptor superfamily. Trends Pharmacol Sci. 2018;39(5):494–512. doi:10.1016/j.tips.2018.02.004
  • Mollereau C, Parmentier M, Mailleux P, et al. ORL1, a novel member of the opioid receptor family: cloning, functional expression and localization. FEBS Lett. 1994;341(1):33–38. doi:10.1016/0014-5793(94)80235-1
  • Zagon IS, Verderame MF, Allen SS, McLaughlin PJ. Cloning, sequencing, chromosomal location, and function of cDNAs encoding an opioid growth factor receptor (OGFr) in humans. Brain Res. 2000;856(1–2):75–83. doi:10.1016/S0006-8993(99)02330-6
  • Peng J, Sarkar S, Chang SL. Opioid receptor expression in human brain and peripheral tissues using absolute quantitative real-time RT-PCR. Drug Alcohol Depend. 2012;124(3):223–228. doi:10.1016/j.drugalcdep.2012.01.013
  • Valentino RJ, Volkow ND. Untangling the complexity of opioid receptor function. Neuropsychopharmacology. 2018;43(13):2514–2520. doi:10.1038/s41386-018-0225-3
  • Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73(1):953–990. doi:10.1146/annurev.biochem.73.011303.073940
  • Shang Y, Filizola M. Opioid receptors: structural and mechanistic insights into pharmacology and signaling. Eur J Pharmacol. 2015;763(Pt B):206–213. doi:10.1016/j.ejphar.2015.05.012
  • Gomes I, Sierra S, Lueptow L, et al. Biased signaling by endogenous opioid peptides. Proc Natl Acad Sci USA. 2020;117(21):11820–11828. doi:10.1073/pnas.2000712117
  • Toll L, Bruchas MR, Calo’ G, Cox BM, Zaveri NT. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev. 2016;68(2):419–457. doi:10.1124/pr.114.009209
  • Manglik A. Molecular basis of opioid action: from structures to new leads. Biol Psych. 2020;87(1):6–14. doi:10.1016/j.biopsych.2019.08.028
  • Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8(6):2–20. doi:10.3390/genes8060148
  • Abrimian A, Kraft T, Pan Y-X. Endogenous opioid peptides and alternatively spliced mu opioid receptor seven transmembrane carboxyl-terminal variants. Int J Mol Sci. 2021;22(7):343. doi:10.3390/ijms22073779
  • Zhang T, Xu J, Pan Y-X. A truncated six transmembrane splice variant mor-1g enhances expression of the full-length seven transmembrane μ-opioid receptor through heterodimerization. Mol Pharmacol. 2020;8(4):518–527. doi:10.1124/mol.120.119453
  • Jullié D, Gondin AB, von Zastrow M, Canals M. Opioid pharmacology under the microscope. Mol Pharmacol. 2020;98(4):425–432. doi:10.1124/mol.119.119321
  • Lu Z, Xu J, Rossi GC, Majumdar S, Pasternak GW, Pan Y-X. Mediation of opioid analgesia by a truncated 6-transmembrane GPCR. J Clin Invest. 2015;125(7):2626–2630. doi:10.1172/JCI81070
  • Pasternak GW, Pan Y-X. Mu opioids and their receptors: evolution of a concept. Pharmacol Rev. 2013;65(4):1257–1317. doi:10.1124/pr.112.007138
  • Mace G, Miaczynska M, Zerial M, Nebreda AR. Phosphorylation of EEA1 by p38 MAP kinase regulates μ opioid receptor endocytosis. EMBO J. 2005;24(18):3235–3246. doi:10.1038/sj.emboj.7600799
  • Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by β-arrestins. Science. 2005;308(5721):512–517. doi:10.1126/science.1109237
  • Ferguson SS, Downey WEIII, Colapietro AM, Barak LS, Menard L, Caron MG. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science. 1996;271(5247):363–366. doi:10.1126/science.271.5247.363
  • Celver J, Xu M, Jin W, Lowe J, Chavkin C. Distinct domains on the μ-opioid receptor control uncoupling and internalization. Mol Pharmacol. 2004;65(3):528–537. doi:10.1124/mol.65.3.528
  • Whistler JL. Functional dissociation of mu opioid receptor- signaling and endocytosis: implications for the biology of tolerance and addiction. Neuron. 1999;23(4):737–746. doi:10.1016/s0896-6273(01)80032-5
  • Koob GF, Le Moal M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24(2):97–129. doi:10.1016/S0893-133X(00)00195-0
  • Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81(1):299–343. doi:10.1152/physrev.2001.81.1.299
  • Whistler JL, von Zastrow M. Morphine-activated opioid receptors elude desensitization by beta-arrestin. Proc Natl Acad Sci USA. 1998;95(17):9914–9919. doi:10.1073/pnas.95.17.9914
  • Duttaroy A, Yoburn BC. The effect of intrinsic efficacy on opioid tolerance. Anesthesiology. 1995;82(5):1226–1236. doi:10.1097/00000542-199505000-00018
  • Yuan L, Luo L, Ma X, et al. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice. Neuropharmacology. 2020;176:108222. doi:10.1016/j.neuropharm.2020.108222
  • Bonci A, Williams JT. Increased probability of GABA release during withdrawal from morphine. J Neurosci. 1997;17(2):796–803. doi:10.1523/JNEUROSCI.17-02-00796.1997
  • Finn AK, Whistler JL. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron. 2001;32(5):829–839. doi:10.1016/s0896-6273(01)00517-7
  • Koob GF, Simon EF. The neurobiology of addiction: where we have been and where we are going. J Drug Issues. 2009;39(1):115–132. doi:10.1177/002204260903900110
  • Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14(5):381–395. doi:10.1016/S0898-6568(01)00271-6
  • Sun Y, Liu W-Z, Liu T, Feng X, Yang N, Zhou H-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct. 2015;35(6):600–604. doi:10.3109/10799893.2015.1030412
  • Biki B, Mascha E, Moriarty DC, Fitzpatrick JM, Sessler DI, Buggy DJ. Anesthetic technique for radical prostatectomy surgery affects cancer recurrence: a retrospective analysis. Anesthesiology. 2008;109(2):180–187. doi:10.1097/ALN.0b013e31817f5b73
  • Exadaktylos AK, Buggy DJ, Moriarty DC, Mascha E, Sessler DI. Can anesthetic technique for primary breast cancer surgery affect recurrence or metastasis? Anesthesiology. 2006;105(4):660–664. doi:10.1037/a0030561
  • Christopherson R, James KE, Tableman M, Marshall P, Johnson FE. Long-term survival after colon cancer surgery: a variation associated with choice of anesthesia. Anesth Analg. 2008;107(1):325–332. doi:10.1213/ane.0b013e3181770f55
  • Schlagenhauff B, Ellwanger U, Breuninger H, Stroebel W, Rassner G, Garbe C. Prognostic impact of the type of anaesthesia used during the excision of primary cutaneous melanoma. Melanoma Res. 2000;10(2):165–169. doi:10.1097/00008390-200004000-00009
  • Mathew B, Lennon FE, Siegler JH, et al. Novel role of the mu opioid receptor in lung cancer progression: a laboratory study. Anesth Analg. 2011;112(3):558–567. doi:10.1213/ANE.0b013e31820568af
  • Zylla D, Kuskowski MA, Gupta K, Gupta P. Association of opioid requirement and cancer pain with survival in advanced non-small cell lung cancer. Br J Anaesth. 2014;113(suppl 1):i109–116. doi:10.1093/bja/aeu351
  • Fujioka N, Nguyen J, Chen C, et al. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer. Anesth Analg. 2011;113(6):1353–1364. doi:10.1213/ANE.0b013e318232b35a
  • Chen C, Farooqui M, Gupta K. Morphine stimulates vascular endothelial growth factor-like signaling in mouse retinal endothelial cells. Curr Neurovasc Res. 2006;3(3):171–180. doi:10.2174/156720206778018767
  • Gupta K, Kshirsagar S, Chang L, et al. Morphine stimulates angiogenesis by activating proangiogenic and survival-promoting signaling and promotes breast tumor growth. Cancer Res. 2002;62(15):4491–4498.
  • Singleton PA, Lingen M, Fekete M, Garcia J, Moss J. Methylnaltrexone inhibits opiate and VEGF-induced angiogenesis: role of receptor transactivation. Microvasc Res. 2006;72(1–2):3–11. doi:10.1016/j.mvr.2006.04.004
  • Wei Y, Zhang B, Li X, et al. Upregulation and activation of δ–opioid receptors promote the progression of human breast cancer. Oncol Rep. 2016;36(5):2579–2586. doi:10.3892/or.2016.5109
  • Oskoueian E, Abdullah N, Ahmad S. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC‑δ, caspase‑3 proteins and down‑regulated the proto‑oncogenes in MCF-7 and HeLa cancer cell lines. Molecules. 2012;17(9):10816–10830. doi:10.3390/molecules170910816
  • Zhu M, Li M, Yang F, et al. Mitochondrial ERK plays a key role in δ‑opioid receptor neuroprotection against acute mitochondrial dysfunction. Neurochem Int. 2011;59(6):739‑748. doi:10.1016/j.neuint.2011.08.005
  • Sancho P, Galeano E, Estañ MC, Ganan‑Gomez I, Boyano‑Adanez MC, Garcia‑Perez AI. Raf/MEK/ERK signaling inhibition enhances the ability of dequalinium to induce apoptosis in the human leukemic cell line K562. Exp Biol Med. 2012;237(8):933–942. doi:10.1258/ebm.2012.011423
  • Tripolt S, Neubauer HA, Knab VM, et al. Opioids drive breast cancer metastasis through the δ-opioid receptor and oncogenic STAT3. Neoplasia. 2021;23(2):270–279. doi:10.1016/j.neo.2020.12.011
  • Wendt MK, Balanis N, Carlin CR, Schiemann WP. STAT3 and epithelial-mesenchymal transitions in carcinomas. JAK-STAT. 2014;3(1):e28975. doi:10.4161/jkst.28975
  • Friesen C, Roscher M, Alt A, Miltner E. Methadone, commonly used as maintenance medication for outpatient treatment of opioid dependence, kills leukemia cells and overcomes chemoresistance. Cancer Res. 2008;68(15):6059–6064. doi:10.1158/0008-5472.CAN-08-1227
  • Friesen C, Hormann I, Roscher M, et al. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma. Cell Cycle. 2014;13(10):1560–1570. doi:10.4161/cc.28493
  • He G, Li LI, Guan E, Chen J, Qin YI, Xie Y. Fentanyl inhibits the progression of human gastric carcinoma MGC-803 cells by modulating NF-kappaB-dependent gene expression in vivo. Onc Lett. 2016;12(1):563–571. doi:10.3892/ol.2016.4619
  • Decker D, Schöndorf M, Bidlingmaier F, et al. Surgical stress induces a shift in the type-1/type-2 T-helper cell balance, suggesting down-regulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to trauma. Surgery. 1996;119(3):316–325. doi:10.1016/s0039-6060(96)80118-8
  • Kutza J, Gratz I, Afshar M, et al. The effects of general anesthesia and surgery on basal and interferon stimulated natural killer cell activity of humans. Anesth Analg. 1997;85(4):918–923. doi:10.1097/00000539-199710000-00037
  • Riboli EB, Terrizzi A, Arnulfo G, et al. Immunosuppressive effect of surgery evaluated by the multitest cell-mediated immunity system. Can J Surg. 1984;27(1):60–63.
  • Filipczak-Bryniarska I, Nowak B, Sikora E, et al. The influence of opioids on the humoral and cell-mediated immune responses in mice. The role of macrophages. Pharmacol Rep. 2012;64(5):1200–1215. doi:10.1016/S1734-1140(12)70916-7
  • Garcia JB, Cardoso MG, Dos-Santos MC. Opioids and the immune system: clinical relevance. Rev Bras Anesthesiol. 2012;62(5):709–718. doi:10.1016/S0034-7094(12)70169-1
  • Nørregaard R, Kwon TH, Frøkiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract. 2015;34(4):194–200. doi:10.1016/j.krcp.2015.10.004
  • Lee KY, Kim YJ, Yoo H, Lee SH, Park JB, Kim HJ. Human brain endothelial cell-derived COX-2 facilitates extravasation of breast cancer cells across the blood-brain barrier. Anticancer Res. 2011;31(12):4307–4313.
  • Ross G, Gabra B, Dewey W, Akbarali H. Morphine tolerance in the mouse ileum and colon. J Pharmacol Exp Ther. 2008;327(2):561–572. doi:10.1124/jpet.108.143438
  • Nelson AD, Camilleri M. Chronic opioid induced constipation in patients with nonmalignant pain: challenges and opportunities. Therap Adv Gastroenterol. 2015;8(4):206–220. doi:10.1177/1756283X15578608
  • Galligan J, Akbarali H. Molecular physiology of enteric opioid receptors. Am J Gastroenterol Suppl. 2014;2(1):17–21.
  • Kang M, Maguma HT, Smith TH, Ross GR, Dewey WL, Akbarali HI. The role of β-arrestin2 in the mechanism of morphine tolerance in the mouse and Guinea pig gastrointestinal tract. J Pharmacol Exp Ther. 2012;340(3):567–576. doi:10.1124/jpet.111.186320
  • Claing A, Laporte SA, Caron MG, et al. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol. 2002;66(2):61–79. doi:10.1016/s0301-0082(01)00023-5
  • Sofuoglu M, Portoghese PS, Takamori AE. Differential antagonism of delta opioid agonists by naltrindole and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther. 1991;257(2):676–680.
  • Miyamoto Y, Portoghese PS, Takemori AE. Involvement of delta 2 opioid receptors in the development of morphine dependence in mice. J Pharmacol Exp Ther. 1993;264(3):1141–1145.
  • Ananthan S. Opioid ligands with mixed mu/delta opioid receptor interactions: an emerging approach to novel analgesics. AAPS J. 2006;8(1):E118–125. doi:10.1208/aapsj080114
  • North RA, Williams JT, Surprenant A, et al. Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci USA. 1987;84(15):5487–5491. doi:10.1073/pnas.84.15.5487
  • Surprenant A, Shen KZ, North RA, et al. Inhibition of calcium currents by noradrenaline, somatostatin and opioids in Guinea-pig submucosal neurones. J Physiol. 1990;431:585–608. doi:10.1113/jphysiol.1990.sp018349
  • Volkow ND, Koob GF, McLellan AT. Neurobiologic advances from the brain disease model of addiction. N Engl J Med. 2016;374(4):363–371. doi:10.1056/NEJMra1511480
  • Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 1998;8(12):1229–1231. doi:10.1101/gr.8.12.1229
  • Volkow ND, Wang GJ, Fowler JS, et al. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse. 2002;46(2):79–82. doi:10.1002/syn.10137
  • Hou QF, Li SB. Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci Lett. 2009;464(2):127–130. doi:10.1016/j.neulet.2009.08.004
  • Lawford BR, Young RM, Noble EP, et al. The D(2) dopamine receptor A(1) allele and opioid dependence: association with heroin use and response to methadone treatment. Am J Med Genet. 2000;96(5):592–598. doi:10.1002/1096-8628(20001009)96:5<592:aid-ajmg3>3.0.co;2-y
  • Kapur S, Sharad S, Singh RA, Gupta AK. A118g polymorphism in mu opioid receptor gene (oprm1): association with opiate addiction in subjects of Indian origin. J Integr Neurosci. 2007;6(4):511–522. doi:10.1142/s0219635207001635
  • Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA. 1998;95(16):9608–9613. doi:10.1073/pnas.95.16.9608
  • Deng N, Zhou H, Fan H, Yuan Y. Single nucleotide polymorphisms and cancer susceptibility. Oncotarget. 2017;8(66):110635–110649. doi:10.18632/oncotarget.22372
  • Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71. doi:10.1126/science.7545954
  • Huen MSY, Sy SMH, Chen J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol. 2010;11(2):138–148. doi:10.1038/nrm2831
  • Nicoloso MS, Sun H, Spizzo R, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789–2798. doi:10.1158/0008-5472.CAN-09-3541
  • Wang K, Xu L, Pan L, Xu K, Li G. The functional BRCA1 rs799917 genetic polymorphism is associated with gastric cancer risk in a Chinese Han population. Tumour Biol. 2015;36(1):393–397. doi:10.1007/s13277-014-2655-9
  • Zhang X, Wei J, Zhou L, et al. Functional BRCA1 coding sequence genetic variant contributes to risk of esophageal squamous cell carcinoma. Carcinogenesis. 2013;34(10):2309–2313. doi:10.1093/carcin/bgt213
  • Liu D, Gao Y, Li L, et al. Single nucleotide polymorphisms in breast cancer susceptibility gene 1 are associated with susceptibility to lung cancer. Oncol Lett. 2021;21(5):424. doi:10.3892/ol.2021.12685
  • Kendler KS, Prescott CA, Myers J, Neale MC. The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Arch Gen Psychiatry. 2003;60(9):929–937. doi:10.1001/archpsyc.60.9.929
  • Baylin SB, Jones PA. A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer. 2011;11(10):726–734. doi:10.1038/nrc3130
  • Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55. doi:10.1016/j.cell.2013.03.008
  • Maze I, Nestler EJ. The epigenetic landscape of addiction. Ann NY Acad Sci. 2011;1216:99–113. doi:10.1111/j.1749-6632.2010.05893.x
  • Hwang CK, Song KY, Kim CS, et al. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol. 2007;27(13):4720–4736. doi:10.1128/MCB.00073-07
  • Nielsen DA, Yuferov V, Hamon S, et al. Increased OPRM1 DNA methylation in lymphocytes of methadone-maintained former heroin addicts. Neuropsychopharmacology. 2009;34(4):867–873. doi:10.1038/npp.2008
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013
  • Lombaerts M, van Wezel T, Philippo K, et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer. 2006;94(5):661–671. doi:10.1038/sj.bjc.6602996
  • Pfeifer GP, Yoon J-H, Liu L, Tommasi S, Wilczynski SP, Dammann R. Methylation of the RASSF1A gene in human cancers. Biol Chem. 2002;383(6):907–914. doi:10.1515/BC.2002.097
  • Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 2003;192(1):75–82. doi:10.1016/s0304-3835(02)00689-4
  • Nakayama T, Kaneko M, Kodama M, Nagata C. Cigarette smoke induces DNA single-strand breaks in human cells. Nature. 1985;314(6010):462–464. doi:10.1038/314462a0
  • Ishida M, Ishida T, Tashiro S, et al. Smoking cessation reverses DNA double-strand breaks in human mononuclear cells. PLoS One. 2014;9(8):e103993. doi:10.1371/journal.pone.0103993
  • Toller IM, Neelsen KJ, Steger M, et al. Carcinogenic bacterial pathogen Helicobacter pylori triggers DNA double-strand breaks and a DNA damage response in its host cells. PNAS. 2011;108(36):14944–14949. doi:10.1073/pnas.1100959108
  • Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulvedaal AR. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology. 2002;123(2):542–553. doi:10.1053/gast.2002.34751
  • Soria J-C, Mok TS, Cappuzzo F, Jänne PA. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. 2012;38(5):416–430. doi:10.1016/j.ctrv.2011.10.003
  • O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. doi:10.1056/NEJMoa022457
  • Carey LA. HER2-a good addiction. Nat Rev Clin Oncol. 2012;9(4):196–197. doi:10.1038/nrclinonc.2012.36
  • Ahn M-J, Tsai C-M, Shepherd FA, et al. Osimertinib in patients with T790M mutation-positive, advanced non–small cell lung cancer: long-term follow-up from a pooled analysis of 2 Phase 2 studies. Cancer. 2019;125(6):892–901. doi:10.1002/cncr.31891
  • Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355(26):2733–2743. doi:10.1056/NEJMoa064320
  • Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68(9):3077–3080. doi:10.1158/0008-5472.CAN-07-3293
  • Rajan SS, Amin AD, Li L, et al. The mechanism of cancer drug addiction in ALK-positive T-Cell lymphoma. Oncogene. 2020;39(10):2103–2117. doi:10.1038/s41388-019-1136-4